本文整理汇总了Python中numpy.logical_not函数的典型用法代码示例。如果您正苦于以下问题:Python logical_not函数的具体用法?Python logical_not怎么用?Python logical_not使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了logical_not函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _run_interface
def _run_interface(self, runtime):
nii1 = nb.load(self.inputs.volume1)
nii2 = nb.load(self.inputs.volume2)
origdata1 = np.logical_not(np.logical_or(nii1.get_data() == 0, np.isnan(nii1.get_data())))
origdata2 = np.logical_not(np.logical_or(nii2.get_data() == 0, np.isnan(nii2.get_data())))
if isdefined(self.inputs.mask_volume):
maskdata = nb.load(self.inputs.mask_volume).get_data()
maskdata = np.logical_not(np.logical_or(maskdata == 0, np.isnan(maskdata)))
origdata1 = np.logical_and(maskdata, origdata1)
origdata2 = np.logical_and(maskdata, origdata2)
for method in ("dice", "jaccard"):
setattr(self, "_" + method, self._bool_vec_dissimilarity(origdata1, origdata2, method=method))
self._volume = int(origdata1.sum() - origdata2.sum())
both_data = np.zeros(origdata1.shape)
both_data[origdata1] = 1
both_data[origdata2] += 2
nb.save(nb.Nifti1Image(both_data, nii1.get_affine(), nii1.get_header()), self.inputs.out_file)
return runtime
示例2: evolution_of_votes_singleMP
def evolution_of_votes_singleMP(dates, votes, wa_all, wa_party, name, asciiname):
if not do_plots: return
f = plt.figure(figsize=figsize_long)
f.suptitle(u'Гласове и отсъствия на %s през годините.'%name)
absences = f.add_subplot(3,1,3)
with_all = f.add_subplot(3,1,1, sharex=absences)
with_party = f.add_subplot(3,1,2, sharex=absences)
all_votes_no_abs = np.sum(votes[:,:3], 1)
all_votes = np.sum(votes, 1)
mask_no_abs = np.logical_not(all_votes_no_abs)
mask = np.logical_not(all_votes)
with_all_array = np.ma.masked_array(100*wa_all[:,0], mask=mask_no_abs)/all_votes_no_abs
with_party_array = np.ma.masked_array(100*wa_party[:,0], mask=mask_no_abs)/all_votes_no_abs
absences_array = np.ma.masked_array(100*votes[:,3], mask=mask)/all_votes
with_all.plot(dates, with_all_array, '.-', alpha=0.3, linewidth=0.1)
with_all.legend([u'% съгласие с мнозинството (без отсъствия)'])
with_party.plot(dates, with_party_array, '.-', alpha=0.3, linewidth=0.1)
with_party.legend([u'% съгласие с партията (без отсъствия)'])
absences.plot(dates, absences_array, '.-', alpha=0.3, linewidth=0.1)
absences.legend([u'% отсъствия'])
with_all.set_yticks([25, 50, 75])
with_party.set_yticks([25, 50, 75])
absences.set_yticks([25, 50, 75])
with_all.set_ylim(0, 100)
with_party.set_ylim(0, 100)
absences.set_ylim(0, 100)
absences.set_xlim(dates[0], dates[-1])
f.autofmt_xdate()
f.savefig('generated_html/vote_evol_%s.png'%asciiname)
plt.close()
示例3: __dectree_train
def __dectree_train(self, X, Y, L, R, F, T, next, depth, minParent, maxDepth, minScore, nFeatures):
"""
This is a recursive helper method that recusively trains the decision tree. Used in:
train
TODO:
compare for numerical tolerance
"""
n,d = mat(X).shape
# check leaf conditions...
if n < minParent or depth >= maxDepth or np.var(Y) < minScore:
assert n != 0, ('TreeRegress.__dectree_train: tried to create size zero node')
return self.__output_leaf(Y, n, L, R, F, T, next)
best_val = np.inf
best_feat = -1
try_feat = np.random.permutation(d)
# ...otherwise, search over (allowed) features
for i_feat in try_feat[0:nFeatures]:
dsorted = arr(np.sort(X[:,i_feat].T)).ravel() # sort data...
pi = np.argsort(X[:,i_feat].T) # ...get sorted indices...
tsorted = Y[pi].ravel() # ...and sort targets by feature ID
can_split = np.append(arr(dsorted[:-1] != dsorted[1:]), 0) # which indices are valid split points?
if not np.any(can_split): # no way to split on this feature?
continue
# find min weighted variance among split points
val,idx = self.__min_weighted_var(tsorted, can_split, n)
# save best feature and split point found so far
if val < best_val:
best_val = val
best_feat = i_feat
best_thresh = (dsorted[idx] + dsorted[idx + 1]) / 2
# if no split possible, output leaf (prediction) node
if best_feat == -1:
return self.__output_leaf(Y, n, L, R, F, T, next)
# split data on feature i_feat, value (tsorted[idx] + tsorted[idx + 1]) / 2
F[next] = best_feat
T[next] = best_thresh
go_left = X[:,F[next]] < T[next]
my_idx = next
next += 1
# recur left
L[my_idx] = next
L,R,F,T,next = self.__dectree_train(X[go_left,:], Y[go_left], L, R, F, T,
next, depth + 1, minParent, maxDepth, minScore, nFeatures)
# recur right
R[my_idx] = next
L,R,F,T,next = self.__dectree_train(X[np.logical_not(go_left),:], Y[np.logical_not(go_left)], L, R, F, T,
next, depth + 1, minParent, maxDepth, minScore, nFeatures)
return (L,R,F,T,next)
示例4: _extrapolate_out_mask
def _extrapolate_out_mask(data, mask, iterations=1):
""" Extrapolate values outside of the mask.
"""
if iterations > 1:
data, mask = _extrapolate_out_mask(data, mask,
iterations=iterations - 1)
new_mask = ndimage.binary_dilation(mask)
larger_mask = np.zeros(np.array(mask.shape) + 2, dtype=np.bool)
larger_mask[1:-1, 1:-1, 1:-1] = mask
# Use nans as missing value: ugly
masked_data = np.zeros(larger_mask.shape + data.shape[3:])
masked_data[1:-1, 1:-1, 1:-1] = data.copy()
masked_data[np.logical_not(larger_mask)] = np.nan
outer_shell = larger_mask.copy()
outer_shell[1:-1, 1:-1, 1:-1] = np.logical_xor(new_mask, mask)
outer_shell_x, outer_shell_y, outer_shell_z = np.where(outer_shell)
extrapolation = list()
for i, j, k in [(1, 0, 0), (-1, 0, 0),
(0, 1, 0), (0, -1, 0),
(0, 0, 1), (0, 0, -1)]:
this_x = outer_shell_x + i
this_y = outer_shell_y + j
this_z = outer_shell_z + k
extrapolation.append(masked_data[this_x, this_y, this_z])
extrapolation = np.array(extrapolation)
extrapolation = (np.nansum(extrapolation, axis=0)
/ np.sum(np.isfinite(extrapolation), axis=0))
extrapolation[np.logical_not(np.isfinite(extrapolation))] = 0
new_data = np.zeros_like(masked_data)
new_data[outer_shell] = extrapolation
new_data[larger_mask] = masked_data[larger_mask]
return new_data[1:-1, 1:-1, 1:-1], new_mask
示例5: test_multilabel_accuracy_score_subset_accuracy
def test_multilabel_accuracy_score_subset_accuracy():
# Dense label indicator matrix format
y1 = np.array([[0, 1, 1], [1, 0, 1]])
y2 = np.array([[0, 0, 1], [1, 0, 1]])
assert_equal(accuracy_score(y1, y2), 0.5)
assert_equal(accuracy_score(y1, y1), 1)
assert_equal(accuracy_score(y2, y2), 1)
assert_equal(accuracy_score(y2, np.logical_not(y2)), 0)
assert_equal(accuracy_score(y1, np.logical_not(y1)), 0)
assert_equal(accuracy_score(y1, np.zeros(y1.shape)), 0)
assert_equal(accuracy_score(y2, np.zeros(y1.shape)), 0)
with ignore_warnings(): # sequence of sequences is deprecated
# List of tuple of label
y1 = [(1, 2,), (0, 2,)]
y2 = [(2,), (0, 2,)]
assert_equal(accuracy_score(y1, y2), 0.5)
assert_equal(accuracy_score(y1, y1), 1)
assert_equal(accuracy_score(y2, y2), 1)
assert_equal(accuracy_score(y2, [(), ()]), 0)
assert_equal(accuracy_score(y1, y2, normalize=False), 1)
assert_equal(accuracy_score(y1, y1, normalize=False), 2)
assert_equal(accuracy_score(y2, y2, normalize=False), 2)
assert_equal(accuracy_score(y2, [(), ()], normalize=False), 0)
示例6: max_diff
def max_diff(vec1, vec2, tol):
mask = np.logical_and(np.logical_not(np.isnan(vec1)), np.logical_not(np.isnan(vec2)))
vec1 = vec1[mask]
vec2 = vec2[mask]
err = np.max(np.abs((vec1 - vec2)))
print "Max Diff: ", err, "(> ", tol, ")"
return err < tol
示例7: binary_hit_or_miss
def binary_hit_or_miss(input, structure1 = None, structure2 = None,
output = None, origin1 = 0, origin2 = None):
"""Multi-dimensional binary hit-or-miss transform.
An output array can optionally be provided. The origin parameters
controls the placement of the structuring elements. If the first
structuring element is not given one is generated with a squared
connectivity equal to one. If the second structuring element is
not provided, it set equal to the inverse of the first structuring
element. If the origin for the second structure is equal to None
it is set equal to the origin of the first.
"""
input = numpy.asarray(input)
if structure1 is None:
structure1 = generate_binary_structure(input.ndim, 1)
if structure2 is None:
structure2 = numpy.logical_not(structure1)
origin1 = _ni_support._normalize_sequence(origin1, input.ndim)
if origin2 is None:
origin2 = origin1
else:
origin2 = _ni_support._normalize_sequence(origin2, input.ndim)
tmp1 = _binary_erosion(input, structure1, 1, None, None, 0, origin1,
0, False)
inplace = isinstance(output, numpy.ndarray)
result = _binary_erosion(input, structure2, 1, None, output, 0,
origin2, 1, False)
if inplace:
numpy.logical_not(output, output)
numpy.logical_and(tmp1, output, output)
else:
numpy.logical_not(result, result)
return numpy.logical_and(tmp1, result)
示例8: compare_fixlens
def compare_fixlens(samp_fixlen, fixlendist, eps=.000000001):
nonan_samp_fixlen = samp_fixlen[np.logical_not(np.isnan(samp_fixlen))]
nonan_fixlendist = fixlendist[np.logical_not(np.isnan(fixlendist))]
print nonan_samp_fixlen, nonan_fixlendist
ks, p = sts.ks_2samp(nonan_samp_fixlen, nonan_fixlendist)
print ks, p
return np.log(p + eps)
示例9: _eucl_max
def _eucl_max(self, nii1, nii2):
origdata1 = nii1.get_data()
origdata1 = np.logical_not(
np.logical_or(origdata1 == 0, np.isnan(origdata1)))
origdata2 = nii2.get_data()
origdata2 = np.logical_not(
np.logical_or(origdata2 == 0, np.isnan(origdata2)))
if isdefined(self.inputs.mask_volume):
maskdata = nb.load(self.inputs.mask_volume).get_data()
maskdata = np.logical_not(
np.logical_or(maskdata == 0, np.isnan(maskdata)))
origdata1 = np.logical_and(maskdata, origdata1)
origdata2 = np.logical_and(maskdata, origdata2)
if origdata1.max() == 0 or origdata2.max() == 0:
return np.NaN
border1 = self._find_border(origdata1)
border2 = self._find_border(origdata2)
set1_coordinates = self._get_coordinates(border1, nii1.affine)
set2_coordinates = self._get_coordinates(border2, nii2.affine)
distances = cdist(set1_coordinates.T, set2_coordinates.T)
mins = np.concatenate(
(np.amin(distances, axis=0), np.amin(distances, axis=1)))
return np.max(mins)
示例10: updateSingle
def updateSingle(self,event=None):
"""Update the 2D data for the region of interest and intensity"""
(vMin,vMax) = self.opPanel.getIntensityRange()
(xMin,xMax,yMin,yMax) = self.opPanel.getRoi()
data = self.flatdata[:,:]
#Mask to zero during the summing parts
data[np.logical_not(self.mask)] = 0
self.posPanel.data = data
self.posPanel.setRange(xMin,yMin,xMax,yMax)
x=np.arange(128,0,-1)
y=np.sum(data[:,xMin:xMax],axis=1)
self.yPanel.SetPlot(x,y)
#handle the x-plot
x=np.arange(0,16,1)
y=np.sum(data[yMin:yMax,:],axis=0)
self.xPanel.SetPlot(x,y)
if vMin is None:
vMin = np.min(data)
if vMax is None:
vMax = np.max(data)
self.colorbar.setRange(vMin,vMax)
self.colorbar.update()
#mask to vmin for the plotting
data[np.logical_not(self.mask)] = vMin
self.imPanel.update(self.flatdata,vMin,vMax)
示例11: build_tree_vector
def build_tree_vector(points_r,points_c,levels_left,local_out_array):
tile_rs = tile[points_r,points_c].reshape( -1,fs);
local_out_array[0,:] = ma.mean(tile_rs,axis=0)
#plt.plot(points_r,points_c,'o')
if levels_left > 1:
remaining_out_array = local_out_array[1:,:]
mean_r = np.mean(points_r);
mean_c = np.mean(points_c)
offset_size = remaining_out_array.shape[0]/4
top = points_r < mean_r
bottom = np.logical_not(top)
left = points_c < mean_c
right = np.logical_not(left)
quadrents = [ (top,right),(top,left),(bottom,left),(bottom,right) ]
#Fill the solution for all 4 quadrents
for idx,quadrent in enumerate(quadrents):
q = np.logical_and(quadrent[0],quadrent[1])
q_out = remaining_out_array[ idx*offset_size : (idx+1)*offset_size, : ]
build_tree_vector(points_r[q],points_c[q],levels_left - 1,q_out)
#renormilize
remaining_out_array *= .25
示例12: data
def data(self, t=None, extrapolate=np.nan, return_indices=False):
if t is None:
d = self.D
ix = np.arange(len(d))
else:
t = np.array(t)
t0 = self.starttime()
t1 = self.endtime()
ix = np.array(np.round((t-t0)/self.dT)).astype(int)
in_range = np.logical_and(t>=t0, t<= t1)
if extrapolate is None:
ix = ix[in_range]
elif extrapolate is False:
ix[t<t0] = 0
ix[t>t1] = self.nD
else:
if any(np.logical_not(in_range)):
ix[np.logical_not(in_range)] = extrapolate
d = selectalonglastdimension(self.D,ix)
if return_indices:
return (d,ix)
else:
return d
示例13: resample
def resample(self):
"""
:return:
Return the data with majority samples that form a Tomek link
removed.
"""
from sklearn.neighbors import NearestNeighbors
# Find the nearest neighbour of every point
nn = NearestNeighbors(n_neighbors=2)
nn.fit(self.x)
nns = nn.kneighbors(self.x, return_distance=False)[:, 1]
# Send the information to is_tomek function to get boolean vector back
if self.verbose:
print("Looking for majority Tomek links...")
links = self.is_tomek(self.y, nns, self.minc, self.verbose)
if self.verbose:
print("Under-sampling "
"performed: " + str(Counter(self.y[logical_not(links)])))
# Return data set without majority Tomek links.
return self.x[logical_not(links)], self.y[logical_not(links)]
示例14: fix_nonfinite
def fix_nonfinite(data):
bad_indexes = np.logical_not(np.isfinite(data))
good_indexes = np.logical_not(bad_indexes)
good_data = data[good_indexes]
interpolated = np.interp(bad_indexes.nonzero()[0], good_indexes.nonzero()[0], good_data)
data[bad_indexes] = interpolated
return data
示例15: run
def run(self, outputs_requested, **kwargs):
# TODO find some interface that doesn't involve string parsing
# modeled after pandas.Dataframe.query:
# http://pandas.pydata.org/pandas-docs/dev/generated/pandas.DataFrame.query.html
# which implements its own computation engine:
# http://pandas.pydata.org/pandas-docs/dev/generated/pandas.eval.html
# supports numpy arithmetic comparison operators:
# http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html#arithmetic-and-comparison-operations
in_table = kwargs['input'].to_np()
col_names = in_table.dtype.names
query = self.__get_ast(col_names)
mask = eval(compile(query, '<string>', 'eval'))
ret = {}
if 'output' in outputs_requested:
uo_out = UObject(UObjectPhase.Write)
uo_out.from_np(in_table[mask])
ret['output'] = uo_out
if 'complement' in outputs_requested:
uo_comp = UObject(UObjectPhase.Write)
uo_comp.from_np(in_table[np.logical_not(mask)])
ret['complement'] = uo_comp
if 'output_inds' in outputs_requested:
uo_out_inds = UObject(UObjectPhase.Write)
uo_out_inds.from_np(np.where(mask)[0])
ret['output_inds'] = uo_out_inds
if 'complement_inds' in outputs_requested:
uo_comp_inds = UObject(UObjectPhase.Write)
uo_comp_inds.from_np(np.where(np.logical_not(mask))[0])
ret['complement_inds'] = uo_comp_inds
return ret