当前位置: 首页>>代码示例>>Python>>正文


Python numpy.logical_not函数代码示例

本文整理汇总了Python中numpy.logical_not函数的典型用法代码示例。如果您正苦于以下问题:Python logical_not函数的具体用法?Python logical_not怎么用?Python logical_not使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了logical_not函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _run_interface

    def _run_interface(self, runtime):
        nii1 = nb.load(self.inputs.volume1)
        nii2 = nb.load(self.inputs.volume2)

        origdata1 = np.logical_not(np.logical_or(nii1.get_data() == 0, np.isnan(nii1.get_data())))
        origdata2 = np.logical_not(np.logical_or(nii2.get_data() == 0, np.isnan(nii2.get_data())))

        if isdefined(self.inputs.mask_volume):
            maskdata = nb.load(self.inputs.mask_volume).get_data()
            maskdata = np.logical_not(np.logical_or(maskdata == 0, np.isnan(maskdata)))
            origdata1 = np.logical_and(maskdata, origdata1)
            origdata2 = np.logical_and(maskdata, origdata2)

        for method in ("dice", "jaccard"):
            setattr(self, "_" + method, self._bool_vec_dissimilarity(origdata1, origdata2, method=method))

        self._volume = int(origdata1.sum() - origdata2.sum())

        both_data = np.zeros(origdata1.shape)
        both_data[origdata1] = 1
        both_data[origdata2] += 2

        nb.save(nb.Nifti1Image(both_data, nii1.get_affine(), nii1.get_header()), self.inputs.out_file)

        return runtime
开发者ID:B-Rich,项目名称:nipype,代码行数:25,代码来源:misc.py

示例2: evolution_of_votes_singleMP

def evolution_of_votes_singleMP(dates, votes, wa_all, wa_party, name, asciiname):
    if not do_plots: return
    f = plt.figure(figsize=figsize_long)
    f.suptitle(u'Гласове и отсъствия на %s през годините.'%name)
    absences = f.add_subplot(3,1,3)
    with_all = f.add_subplot(3,1,1, sharex=absences)
    with_party = f.add_subplot(3,1,2, sharex=absences)

    all_votes_no_abs = np.sum(votes[:,:3], 1)
    all_votes = np.sum(votes, 1)
    mask_no_abs = np.logical_not(all_votes_no_abs)
    mask = np.logical_not(all_votes)
    with_all_array = np.ma.masked_array(100*wa_all[:,0], mask=mask_no_abs)/all_votes_no_abs
    with_party_array = np.ma.masked_array(100*wa_party[:,0], mask=mask_no_abs)/all_votes_no_abs
    absences_array = np.ma.masked_array(100*votes[:,3], mask=mask)/all_votes

    with_all.plot(dates, with_all_array, '.-', alpha=0.3, linewidth=0.1)
    with_all.legend([u'% съгласие с мнозинството (без отсъствия)'])
    with_party.plot(dates, with_party_array, '.-', alpha=0.3, linewidth=0.1)
    with_party.legend([u'% съгласие с партията (без отсъствия)'])
    absences.plot(dates, absences_array, '.-', alpha=0.3, linewidth=0.1)
    absences.legend([u'% отсъствия'])

    with_all.set_yticks([25, 50, 75])
    with_party.set_yticks([25, 50, 75])
    absences.set_yticks([25, 50, 75])
    with_all.set_ylim(0, 100)
    with_party.set_ylim(0, 100)
    absences.set_ylim(0, 100)
    absences.set_xlim(dates[0], dates[-1])
    f.autofmt_xdate()
    f.savefig('generated_html/vote_evol_%s.png'%asciiname)
    plt.close()
开发者ID:Krastanov,项目名称:parlamentaren-kontrol,代码行数:33,代码来源:pk_plots.py

示例3: __dectree_train

    def __dectree_train(self, X, Y, L, R, F, T, next, depth, minParent, maxDepth, minScore, nFeatures):
        """
        This is a recursive helper method that recusively trains the decision tree. Used in:
            train

        TODO:
            compare for numerical tolerance
        """
        n,d = mat(X).shape

        # check leaf conditions...
        if n < minParent or depth >= maxDepth or np.var(Y) < minScore:
            assert n != 0, ('TreeRegress.__dectree_train: tried to create size zero node')
            return self.__output_leaf(Y, n, L, R, F, T, next)

        best_val = np.inf
        best_feat = -1
        try_feat = np.random.permutation(d)

        # ...otherwise, search over (allowed) features
        for i_feat in try_feat[0:nFeatures]:
            dsorted = arr(np.sort(X[:,i_feat].T)).ravel()                       # sort data...
            pi = np.argsort(X[:,i_feat].T)                                      # ...get sorted indices...
            tsorted = Y[pi].ravel()                                             # ...and sort targets by feature ID
            can_split = np.append(arr(dsorted[:-1] != dsorted[1:]), 0)          # which indices are valid split points?

            if not np.any(can_split):          # no way to split on this feature?
                continue

            # find min weighted variance among split points
            val,idx = self.__min_weighted_var(tsorted, can_split, n)

            # save best feature and split point found so far
            if val < best_val:
                best_val = val
                best_feat = i_feat
                best_thresh = (dsorted[idx] + dsorted[idx + 1]) / 2

        # if no split possible, output leaf (prediction) node
        if best_feat == -1:         
            return self.__output_leaf(Y, n, L, R, F, T, next)

        # split data on feature i_feat, value (tsorted[idx] + tsorted[idx + 1]) / 2
        F[next] = best_feat
        T[next] = best_thresh
        go_left = X[:,F[next]] < T[next]
        my_idx = next
        next += 1

        # recur left
        L[my_idx] = next    
        L,R,F,T,next = self.__dectree_train(X[go_left,:], Y[go_left], L, R, F, T, 
            next, depth + 1, minParent, maxDepth, minScore, nFeatures)

        # recur right
        R[my_idx] = next    
        L,R,F,T,next = self.__dectree_train(X[np.logical_not(go_left),:], Y[np.logical_not(go_left)], L, R, F, T, 
            next, depth + 1, minParent, maxDepth, minScore, nFeatures)

        return (L,R,F,T,next)
开发者ID:exzacktlee,项目名称:ml_final_project,代码行数:60,代码来源:dtree.py

示例4: _extrapolate_out_mask

def _extrapolate_out_mask(data, mask, iterations=1):
    """ Extrapolate values outside of the mask.
    """
    if iterations > 1:
        data, mask = _extrapolate_out_mask(data, mask,
                                          iterations=iterations - 1)
    new_mask = ndimage.binary_dilation(mask)
    larger_mask = np.zeros(np.array(mask.shape) + 2, dtype=np.bool)
    larger_mask[1:-1, 1:-1, 1:-1] = mask
    # Use nans as missing value: ugly
    masked_data = np.zeros(larger_mask.shape + data.shape[3:])
    masked_data[1:-1, 1:-1, 1:-1] = data.copy()
    masked_data[np.logical_not(larger_mask)] = np.nan
    outer_shell = larger_mask.copy()
    outer_shell[1:-1, 1:-1, 1:-1] = np.logical_xor(new_mask, mask)
    outer_shell_x, outer_shell_y, outer_shell_z = np.where(outer_shell)
    extrapolation = list()
    for i, j, k in [(1, 0, 0), (-1, 0, 0), 
                    (0, 1, 0), (0, -1, 0),
                    (0, 0, 1), (0, 0, -1)]:
        this_x = outer_shell_x + i
        this_y = outer_shell_y + j
        this_z = outer_shell_z + k
        extrapolation.append(masked_data[this_x, this_y, this_z])

    extrapolation = np.array(extrapolation)
    extrapolation = (np.nansum(extrapolation, axis=0)
                     / np.sum(np.isfinite(extrapolation), axis=0))
    extrapolation[np.logical_not(np.isfinite(extrapolation))] = 0
    new_data = np.zeros_like(masked_data)
    new_data[outer_shell] = extrapolation
    new_data[larger_mask] = masked_data[larger_mask]
    return new_data[1:-1, 1:-1, 1:-1], new_mask
开发者ID:jeromedockes,项目名称:nilearn,代码行数:33,代码来源:masking.py

示例5: test_multilabel_accuracy_score_subset_accuracy

def test_multilabel_accuracy_score_subset_accuracy():
    # Dense label indicator matrix format
    y1 = np.array([[0, 1, 1], [1, 0, 1]])
    y2 = np.array([[0, 0, 1], [1, 0, 1]])

    assert_equal(accuracy_score(y1, y2), 0.5)
    assert_equal(accuracy_score(y1, y1), 1)
    assert_equal(accuracy_score(y2, y2), 1)
    assert_equal(accuracy_score(y2, np.logical_not(y2)), 0)
    assert_equal(accuracy_score(y1, np.logical_not(y1)), 0)
    assert_equal(accuracy_score(y1, np.zeros(y1.shape)), 0)
    assert_equal(accuracy_score(y2, np.zeros(y1.shape)), 0)

    with ignore_warnings():  # sequence of sequences is deprecated
        # List of tuple of label
        y1 = [(1, 2,), (0, 2,)]
        y2 = [(2,), (0, 2,)]

        assert_equal(accuracy_score(y1, y2), 0.5)
        assert_equal(accuracy_score(y1, y1), 1)
        assert_equal(accuracy_score(y2, y2), 1)
        assert_equal(accuracy_score(y2, [(), ()]), 0)
        assert_equal(accuracy_score(y1, y2, normalize=False), 1)
        assert_equal(accuracy_score(y1, y1, normalize=False), 2)
        assert_equal(accuracy_score(y2, y2, normalize=False), 2)
        assert_equal(accuracy_score(y2, [(), ()], normalize=False), 0)
开发者ID:nateyoder,项目名称:scikit-learn,代码行数:26,代码来源:test_classification.py

示例6: max_diff

def max_diff(vec1, vec2, tol):
    mask = np.logical_and(np.logical_not(np.isnan(vec1)), np.logical_not(np.isnan(vec2)))
    vec1 = vec1[mask]
    vec2 = vec2[mask]
    err = np.max(np.abs((vec1 - vec2)))
    print "Max Diff: ", err, "(> ", tol, ")"
    return err < tol
开发者ID:prollejazz,项目名称:halomod,代码行数:7,代码来源:test_known_results.py

示例7: binary_hit_or_miss

def binary_hit_or_miss(input, structure1 = None, structure2 = None,
                       output = None, origin1 = 0, origin2 = None):
    """Multi-dimensional binary hit-or-miss transform.

    An output array can optionally be provided. The origin parameters
    controls the placement of the structuring elements. If the first
    structuring element is not given one is generated with a squared
    connectivity equal to one. If the second structuring element is
    not provided, it set equal to the inverse of the first structuring
    element. If the origin for the second structure is equal to None
    it is set equal to the origin of the first.
    """
    input = numpy.asarray(input)
    if structure1 is None:
        structure1 = generate_binary_structure(input.ndim, 1)
    if structure2 is None:
        structure2 = numpy.logical_not(structure1)
    origin1 = _ni_support._normalize_sequence(origin1, input.ndim)
    if origin2 is None:
        origin2 = origin1
    else:
        origin2 = _ni_support._normalize_sequence(origin2, input.ndim)

    tmp1 = _binary_erosion(input, structure1, 1, None, None, 0, origin1,
                           0, False)
    inplace = isinstance(output, numpy.ndarray)
    result = _binary_erosion(input, structure2, 1, None, output, 0,
                             origin2, 1, False)
    if inplace:
        numpy.logical_not(output, output)
        numpy.logical_and(tmp1, output, output)
    else:
        numpy.logical_not(result, result)
        return numpy.logical_and(tmp1, result)
开发者ID:AndreI11,项目名称:SatStressGui,代码行数:34,代码来源:morphology.py

示例8: compare_fixlens

def compare_fixlens(samp_fixlen, fixlendist, eps=.000000001):
    nonan_samp_fixlen = samp_fixlen[np.logical_not(np.isnan(samp_fixlen))]
    nonan_fixlendist = fixlendist[np.logical_not(np.isnan(fixlendist))]
    print nonan_samp_fixlen, nonan_fixlendist
    ks, p = sts.ks_2samp(nonan_samp_fixlen, nonan_fixlendist)
    print ks, p
    return np.log(p + eps)
开发者ID:wj2,项目名称:vplt-analysis,代码行数:7,代码来源:tmfit.py

示例9: _eucl_max

    def _eucl_max(self, nii1, nii2):
        origdata1 = nii1.get_data()
        origdata1 = np.logical_not(
            np.logical_or(origdata1 == 0, np.isnan(origdata1)))
        origdata2 = nii2.get_data()
        origdata2 = np.logical_not(
            np.logical_or(origdata2 == 0, np.isnan(origdata2)))

        if isdefined(self.inputs.mask_volume):
            maskdata = nb.load(self.inputs.mask_volume).get_data()
            maskdata = np.logical_not(
                np.logical_or(maskdata == 0, np.isnan(maskdata)))
            origdata1 = np.logical_and(maskdata, origdata1)
            origdata2 = np.logical_and(maskdata, origdata2)

        if origdata1.max() == 0 or origdata2.max() == 0:
            return np.NaN

        border1 = self._find_border(origdata1)
        border2 = self._find_border(origdata2)

        set1_coordinates = self._get_coordinates(border1, nii1.affine)
        set2_coordinates = self._get_coordinates(border2, nii2.affine)
        distances = cdist(set1_coordinates.T, set2_coordinates.T)
        mins = np.concatenate(
            (np.amin(distances, axis=0), np.amin(distances, axis=1)))

        return np.max(mins)
开发者ID:Conxz,项目名称:nipype,代码行数:28,代码来源:metrics.py

示例10: updateSingle

 def updateSingle(self,event=None):
     """Update the 2D data for the region of interest and intensity"""
     (vMin,vMax) = self.opPanel.getIntensityRange()
     (xMin,xMax,yMin,yMax) = self.opPanel.getRoi()
     data = self.flatdata[:,:]
   
     #Mask to zero during the summing parts
     data[np.logical_not(self.mask)] = 0
     self.posPanel.data = data
     self.posPanel.setRange(xMin,yMin,xMax,yMax)
     x=np.arange(128,0,-1)
     y=np.sum(data[:,xMin:xMax],axis=1)
     self.yPanel.SetPlot(x,y)
     #handle the x-plot
     x=np.arange(0,16,1)
     y=np.sum(data[yMin:yMax,:],axis=0)
     self.xPanel.SetPlot(x,y)
     if vMin is None:
         vMin = np.min(data)
     if vMax is None:
         vMax = np.max(data)
     self.colorbar.setRange(vMin,vMax)
     self.colorbar.update()
     #mask to vmin for the plotting
     data[np.logical_not(self.mask)] = vMin
     self.imPanel.update(self.flatdata,vMin,vMax)
开发者ID:rprospero,项目名称:PelVis,代码行数:26,代码来源:pelvis.py

示例11: build_tree_vector

 def build_tree_vector(points_r,points_c,levels_left,local_out_array):
     
     tile_rs = tile[points_r,points_c].reshape( -1,fs);
     local_out_array[0,:] = ma.mean(tile_rs,axis=0)
     
         #plt.plot(points_r,points_c,'o')
     if levels_left > 1:
         remaining_out_array = local_out_array[1:,:]
         mean_r = np.mean(points_r);
         mean_c = np.mean(points_c)
         
         offset_size = remaining_out_array.shape[0]/4
 
         top = points_r < mean_r
         bottom = np.logical_not(top)
         left = points_c < mean_c
         right = np.logical_not(left)
         
         quadrents = [ (top,right),(top,left),(bottom,left),(bottom,right)  ]
         
         #Fill the solution for all 4 quadrents 
         for idx,quadrent in enumerate(quadrents):
             q = np.logical_and(quadrent[0],quadrent[1])
             q_out = remaining_out_array[ idx*offset_size : (idx+1)*offset_size, : ]
             build_tree_vector(points_r[q],points_c[q],levels_left - 1,q_out)
         #renormilize 
         remaining_out_array *= .25
开发者ID:ylockerman,项目名称:multi-scale-label-map-extraction,代码行数:27,代码来源:feature_space.py

示例12: data

    def data(self, t=None, extrapolate=np.nan, return_indices=False):
        if t is None:
            d = self.D
            ix = np.arange(len(d))
        else:
            t = np.array(t)
            t0 = self.starttime()
            t1 = self.endtime()
            ix = np.array(np.round((t-t0)/self.dT)).astype(int)
            in_range = np.logical_and(t>=t0, t<= t1)

            if extrapolate is None:
                ix = ix[in_range]
            elif extrapolate is False:
                ix[t<t0] = 0
                ix[t>t1] = self.nD
            else:
                if any(np.logical_not(in_range)):
                    ix[np.logical_not(in_range)] = extrapolate

            d = selectalonglastdimension(self.D,ix)
        if return_indices:
            return (d,ix)
        else:
            return d
开发者ID:ybreton,项目名称:timestamptools,代码行数:25,代码来源:timestampeddata.py

示例13: resample

    def resample(self):
        """
        :return:
            Return the data with majority samples that form a Tomek link
            removed.
        """

        from sklearn.neighbors import NearestNeighbors

        # Find the nearest neighbour of every point
        nn = NearestNeighbors(n_neighbors=2)
        nn.fit(self.x)
        nns = nn.kneighbors(self.x, return_distance=False)[:, 1]

        # Send the information to is_tomek function to get boolean vector back
        if self.verbose:
            print("Looking for majority Tomek links...")
        links = self.is_tomek(self.y, nns, self.minc, self.verbose)

        if self.verbose:
            print("Under-sampling "
                  "performed: " + str(Counter(self.y[logical_not(links)])))

        # Return data set without majority Tomek links.
        return self.x[logical_not(links)], self.y[logical_not(links)]
开发者ID:MGolubeva,项目名称:Ubalanced_classes,代码行数:25,代码来源:under_sampling.py

示例14: fix_nonfinite

def fix_nonfinite(data):
    bad_indexes = np.logical_not(np.isfinite(data))
    good_indexes = np.logical_not(bad_indexes)
    good_data = data[good_indexes]
    interpolated = np.interp(bad_indexes.nonzero()[0], good_indexes.nonzero()[0], good_data)
    data[bad_indexes] = interpolated
    return data
开发者ID:wafels,项目名称:rednoise,代码行数:7,代码来源:paper1.py

示例15: run

 def run(self, outputs_requested, **kwargs):
     # TODO find some interface that doesn't involve string parsing
     # modeled after pandas.Dataframe.query:
     #     http://pandas.pydata.org/pandas-docs/dev/generated/pandas.DataFrame.query.html
     # which implements its own computation engine:
     #     http://pandas.pydata.org/pandas-docs/dev/generated/pandas.eval.html
     # supports numpy arithmetic comparison operators:
     #     http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html#arithmetic-and-comparison-operations
     in_table = kwargs['input'].to_np()
     col_names = in_table.dtype.names
     query = self.__get_ast(col_names)
     mask = eval(compile(query, '<string>', 'eval'))
     ret = {}
     if 'output' in outputs_requested:
         uo_out = UObject(UObjectPhase.Write)
         uo_out.from_np(in_table[mask])
         ret['output'] = uo_out
     if 'complement' in outputs_requested:
         uo_comp = UObject(UObjectPhase.Write)
         uo_comp.from_np(in_table[np.logical_not(mask)])
         ret['complement'] = uo_comp
     if 'output_inds' in outputs_requested:
         uo_out_inds = UObject(UObjectPhase.Write)
         uo_out_inds.from_np(np.where(mask)[0])
         ret['output_inds'] = uo_out_inds
     if 'complement_inds' in outputs_requested:
         uo_comp_inds = UObject(UObjectPhase.Write)
         uo_comp_inds.from_np(np.where(np.logical_not(mask))[0])
         ret['complement_inds'] = uo_comp_inds
     return ret
开发者ID:Najah-lshanableh,项目名称:UPSG,代码行数:30,代码来源:split.py


注:本文中的numpy.logical_not函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。