本文整理汇总了Python中numpy.less_equal函数的典型用法代码示例。如果您正苦于以下问题:Python less_equal函数的具体用法?Python less_equal怎么用?Python less_equal使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了less_equal函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plotCurves
def plotCurves(c1, c2):
name1, t, avg1, top1, bottom1 = c1
name2, t, avg2, top2, bottom2 = c2
pl.plot(t, np.zeros(len(t)), 'k-')
s1 = ma.array(avg1)
s2 = ma.array(avg2)
zx1 = np.logical_and(np.greater_equal(top1, 0), np.less_equal(bottom1, 0))
zx2 = np.logical_and(np.greater_equal(top2, 0), np.less_equal(bottom2, 0))
ix = np.logical_or(
np.logical_and(
np.greater_equal(top1, top2),
np.less_equal(bottom1, top2)),
np.logical_and(
np.greater_equal(top1, bottom2),
np.less_equal(bottom1, bottom2)))
mask1 = np.logical_or(zx1, ix)
mask2 = np.logical_or(zx2, ix)
print mask1
print mask2
print zx1
print zx2
print ix
pl.plot(t, s1, "k--", linewidth=1)
pl.plot(t, s2, "k-", linewidth=1)
s1.mask = ix
s2.mask = ix
pl.plot(t, s1, "k--", linewidth=3, label=name1)
pl.plot(t, s2, "k-", linewidth=3, label=name2)
pl.xlabel('Time (secs)')
pl.ylabel("Pearson correlation")
示例2: eval
def eval(self, band, times, z=0, k=1):
'''Evaluate, using a spline, the value of the template at specific
times, optionally with a redshift (in the sense that the times should
be blueshifted before interpolating. Also returns a mask indicating
the interpolated points (1) and the extrapolated points (0)'''
if len(num.shape(times)) == 0:
evt = num.array([times/(1+z)])
scalar = 1
else:
evt = times/(1+z)
scalar = 0
if band not in self.__dict__ and band not in ['J','H','K']:
raise AttributeError, "Sorry, band %s is not supported by dm15temp" % \
band
s = dm152s(self.dm15)
if band == 'J':
return(0.080 + evt/s*0.05104699 + 0.007064257*(evt/s)**2 - 0.000257906*(evt/s)**3,
0.0*evt/s + 0.06, num.greater_equal(evt/s, -12)*num.less_equal(evt/s, 10))
elif band == 'H':
return(0.050 + evt/s*0.0250923 + 0.001852107*(evt/s)**2 - 0.0003557824*(evt/s)**3,
0.0*evt/s + 0.08, num.greater_equal(evt/s, -12)*num.less_equal(evt/s, 10))
elif band == 'K':
return(0.042 + evt/s*0.02728437+ 0.003194500*(evt/s)**2 - 0.0004139377*(evt/s)**3,
0.0*evt/s + 0.08, num.greater_equal(evt/s, -12)*num.less_equal(evt/s, 10))
evd = self.tck[band].ev(evt/self.s, evt*0+self.dm15)
eevd = self.tck['e_'+band].ev(evt/self.s, evt*0+self.dm15)
mask = num.greater_equal(evt/self.s, -10)*num.less_equal(evt/self.s,70)
if scalar:
return(evd[0], eevd[0], mask[0])
else:
return(evd, eevd, mask)
示例3: parallel_point_test
def parallel_point_test(center,dim,x,y,z):
'''
Overview:
Determines whether a given point is in a parallelapiped given the point
being tested and the relevant parameters.
Parameters:
center:(float,[3]|angstroms) = The coordinates of the center of the
parallelapiped. This parameter is in the form (x center,y center, z center)
dim:(float,[3]|angstroms) = The x, y and z dimensions of the parallelapiped
object.
x,y,z:(float|angstroms) = coordinates for the point being tested.
Note:
-The API is left intentionally independent of the class structures used in
sample_prep.py to allow for code resuabilitiy.
'''
low_lim = (array(center) - (array(dim)/2.0))
high_lim = (array(center) +(array(dim)/2.0))
height_lim = greater_equal (z,low_lim[2])*less_equal (z,high_lim[2])
length_lim = greater_equal (y,low_lim[1])*less_equal (y,high_lim[1])
width_lim = greater_equal (x,low_lim[0])*less_equal (x,high_lim[0])
test_results = height_lim * length_lim * width_lim
return test_results
示例4: __call__
def __call__(self, x):
'''Interpolate at point [x]. Returns a 3-tuple: (y, mask) where [y]
is the interpolated point, and [mask] is a boolean array with the same
shape as [x] and is True where interpolated and False where extrapolated'''
if not self.setup:
self._setup()
if len(num.shape(x)) < 1:
scalar = True
else:
scalar = False
x = num.atleast_1d(x)
if self.realization:
evm = num.atleast_1d(splev(x, self.realization))
mask = num.greater_equal(x, self.realization[0][0])*\
num.less_equal(x,self.realization[0][-1])
else:
evm = num.atleast_1d(splev(x, self.tck))
mask = num.greater_equal(x, self.tck[0][0])*num.less_equal(x,self.tck[0][-1])
if scalar:
return evm[0],mask[0]
else:
return evm,mask
示例5: filter
def filter(mask, cube, header, clipMethod, threshold, rmsMode, verbose):
if clipMethod == 'relative':
# determine the clip level
# Measure noise in original cube
# rms = GetRMS(cube,rmsmode=rmsMode,zoomx=1,zoomy=1,zoomz=100000,verb=verbose,nrbins=100000)
rms = GetRMS(cube, rmsMode=rmsMode, zoomx=1, zoomy=1, zoomz=1, verbose=verbose)
print 'Estimated rms = ', rms
clip = threshold * rms
if clipMethod == 'absolute':
clip = threshold
print 'using clip threshold: ', clip
#return ((cube >= clip)+(cube <= -1*clip))
# check whether there are NaNs
nan_mask = np.isnan(cube)
found_nan=nan_mask.sum()
if found_nan:
cube=np.nan_to_num(cube)
np.logical_or(mask, (np.greater_equal(cube, clip) + np.less_equal(cube, -clip)), mask)
cube[nan_mask]=np.nan
else:
np.logical_or(mask, (np.greater_equal(cube, clip) + np.less_equal(cube, -clip)), mask)
return
示例6: getMaxPoints
def getMaxPoints(arr):
# [TODO] Work out for RGB rather than array, and maybe we don't need the filter, but hopefully speeds it up.
# Reference http://scipy-cookbook.readthedocs.io/items/FiltFilt.html
arra = filtfilt(b,a,arr)
maxp = maxpoints(arra, order=(len(arra)/20), mode='wrap')
minp = minpoints(arra, order=(len(arra)/20), mode='wrap')
points = []
for i in range(3):
mas = np.equal(np.greater_equal(maxp,(i*(len(arra)/3))), np.less_equal(maxp,((i+1)*len(arra)/3)))
k = np.compress(mas[0], maxp)
if len(k)==0:
continue
points.append(sum(k)/len(k))
if len(points) == 1:
return points, []
points = np.compress(np.greater_equal(arra[points],(max(arra)-min(arra))*0.40 + min(arra)),points)
rifts = []
for i in range(len(points)-1):
mas = np.equal(np.greater_equal(minp, points[i]),np.less_equal(minp,points[i+1]))
k = np.compress(mas[0], minp)
rifts.append(k[arra[k].argmin()])
return points, rifts
示例7: _calc_uncorr_gene_score
def _calc_uncorr_gene_score(gene, input_gene, input_snp, pruned_snps, hotspots):
# find local snps given a gene
cond_snps_near_gene = logical_and(np.equal(input_snp[:, 0], input_gene[gene, 0]),
np.greater_equal(input_snp[:, 1], input_gene[gene, 1]),
np.less_equal(input_snp[:, 1], input_gene[gene, 2]))
# if no snps found
if not np.any(cond_snps_near_gene):
return (np.nan, 0, 1, 0, 0)
n_snps_zscore_finite = np.sum(np.isfinite(input_snp[cond_snps_near_gene][:, 3]))
# if no snps with finite zcore
if n_snps_zscore_finite == 0:
return (np.nan, 0, 1, 0, 0)
n_snps_per_gene = n_snps_zscore_finite
# use p-value to find most significant SNP
idx_min_pval = np.nanargmin(input_snp[cond_snps_near_gene][:, 3])
uncorr_score = input_snp[cond_snps_near_gene][idx_min_pval, 2]
# count number of independent SNPs per gene
n_indep_snps_per_gene = np.sum(logical_and(np.equal(pruned_snps[:, 0], input_gene[gene, 0]),
np.greater_equal(pruned_snps[:, 1], input_gene[gene, 1]),
np.less_equal(pruned_snps[:, 1], input_gene[gene, 2])))
# count number of hotspots per gene
n_hotspots_per_gene = np.sum(np.logical_and(np.equal(hotspots[:, 0], input_gene[gene, 0]),
np.greater(np.fmin(hotspots[:, 2], input_gene[gene, 2])
- np.fmax(hotspots[:, 1], input_gene[gene, 1]), 0)))
return (uncorr_score, n_snps_per_gene, 0, n_indep_snps_per_gene, n_hotspots_per_gene)
示例8: phantom
def phantom(x):
result = True
for xi, xmin, xmax in zip(x, min_pt, max_pt):
result = (result &
np.less_equal(xmin, xi) & np.less_equal(xi, xmax))
return result
示例9: test_rand
def test_rand(self):
# Simple distributional checks for sparse.rand.
for random_state in None, 4321, np.random.RandomState():
x = sprand(10, 20, density=0.5, dtype=np.float64,
random_state=random_state)
assert_(np.all(np.less_equal(0, x.data)))
assert_(np.all(np.less_equal(x.data, 1)))
示例10: phan
def phan(x):
result = True
for xp, minv, maxv in zip(x, begin, end):
result = (result &
np.less_equal(minv, xp) & np.less_equal(xp, maxv))
return result
示例11: radial_contrast_flr
def radial_contrast_flr(image, xc, yc, seps, zw, coron_thrupt, klip_thrupt=None):
rad_flr_ctc = np.empty((len(seps)))
assert(len(seps) == len(coron_thrupt))
if klip_thrupt is not None:
assert(len(seps) == len(klip_thrupt))
rad_flr_ctc_ktc = np.empty((len(seps)))
else:
rad_flr_ctc_ktc = None
imh = image.shape[0]
imw = image.shape[1]
xs = np.arange(imw) - xc
ys = np.arange(imh) - yc
XXs, YYs = np.meshgrid(xs, ys)
RRs = np.sqrt(XXs**2 + YYs**2)
for si, sep in enumerate(seps):
r_in = np.max([seps[0], sep-zw/2.])
r_out = np.min([seps[-1], sep+zw/2.])
meas_ann_mask = np.logical_and(np.greater_equal(RRs, r_in),
np.less_equal(RRs, r_out))
meas_ann_ind = np.nonzero(np.logical_and(np.greater_equal(RRs, r_in).ravel(),
np.less_equal(RRs, r_out).ravel()))[0]
meas_ann = np.ravel(image)[meas_ann_ind]
rad_flr_ctc[si] = np.nanstd(meas_ann)/coron_thrupt[si]
if rad_flr_ctc_ktc is not None:
rad_flr_ctc_ktc[si] = np.nanstd(meas_ann)/coron_thrupt[si]/klip_thrupt[si]
#pdb.set_trace()
return rad_flr_ctc, rad_flr_ctc_ktc
示例12: FDR
def FDR(p,q):
'''
input:
p - vector of p-values (numpy array)
q - False Discovery Rate level
output:
pID - p-value threshold based on independence or positive dependence
pN - Nonparametric p-value threshold
*if non of the p-values pass FDR, an empty list is returned
'''
isort = np.argsort(p)
p = p[isort]
V = len(p)
I = np.array(range(1,V+1))
cVID = 1
cVN = sum(np.divide(float(1),I))
#threshold based on independence or positive dependence
ID_thresh_vec = (I*q)/V/cVID
ID_pass_vec = np.less_equal(p,ID_thresh_vec)
if any(ID_pass_vec):
pID = max(p[ID_pass_vec])
else:
pID = []
# Nonparametric threshold
N_thresh_vec = (I*q)/V/cVN
N_pass_vec = np.less_equal(p,N_thresh_vec)
if any(N_pass_vec):
pN = max(p[N_pass_vec])
else:
pN = []
return pID, pN
示例13: cone_point_test
def cone_point_test(center,dim,stub,x,y,z):
'''
Overview:
Determines whether a given point is in an cone given the point being
tested and the relevant parameters..
Parameters:
center:float,[3]|angstroms) = The x, y, and z component of the central
point of the ellipsoid. In the case that the center is set to
[None,None,None] the shape will be put in the bottom corner of the unit cell
(the bounding box will start at (0,0,0).
dim:(float,[3]|angstroms) = The x component, y component and thickness
of the cone respectively. x is the radius of the cone base in the x
direction and b is the radius of the cone base in the y direction.
stub:(float|angstroms) = provides a hard cut-off for the thickness of the
cone. this allows for the creation of a truncated cone object who side slope
can be altered by using different z component values while keeping the stub
parameter fixed.
x,y,z:(float|angstroms) = coordinates for the point being tested.
Notes:
-To solve this equation more efficiently, the program takes in an array of
x,y and z so that x[size(x),1,1], y[1,size(y),1], z[1,1,size(z)]. This
module then solves each part of the test individually and takes the product.
Only the points where all of the inquires are True will be left as true in
the test_results array
-The API is left intentionally independent of the class structures used in
sample_prep.py to allow for code resuabilitiy.
'''
a_angle = arctan(dim[2]/dim[0])
b_angle = arctan(dim[2]/dim[1])
low_height_lim = greater_equal (z,(center[2] - dim[2]/2))
if stub == None:
up_height_lim = less_equal (z,(center[2] + dim[2]/2))
else:
up_height_lim = less_equal (z,(center[2] + stub/2))
xy_test = ((((x-center[0])**2)/((((center[2] +
dim[2]/2)-z)/tan(a_angle))**2))+(((y-center[1])**2)/((((center[2] +
dim[2]/2)-z)/tan(b_angle))**2)))
in_plane_low_lim = less_equal (0.0,xy_test)
in_plane_high_lim = greater_equal (1.0,xy_test)
test_results = (low_height_lim * up_height_lim * in_plane_low_lim *
in_plane_high_lim)
return test_results
示例14: find_pi
def find_pi(m):
np.random.seed()
x1 = np.random.random(N)
y1 = np.random.random(N)
np.square(x1,x1)
np.square(y1,y1)
np.add(x1,y1,x1)
np.less_equal(x1, 1.0, x1)
return np.add.reduce(x1)*4.0/N
示例15: ts_increments
def ts_increments(ts, monotony = 'increasing', max_value = None, reset_value = 0.):
'''Return a timeserie with the increments registered in the
input timeserie
.. arguments:
- (list) ts: pandas DataFrame containing a timeserie
- (string) monotony: increasing / decreasing / non_monotonous
- (float) max_value: value from which the meter is reseted
- (float) reset_value: value to which the meter is reseted
.. returns:
- on success: timeseries of increments. The output timeseries contains
one value less than the original one. The diference between
two values, is assigned to the epoch of the second one.'''
new_ts = ts_to_float(ts)
if 'error' in new_ts:
return new_ts
if len(new_ts) <= 1:
return {'error': 'timeserie must have length greater than 1 to compute increments'}
if max_value != None:
try:
max_value = float(max_value)
except:
return {'error': 'max_value is not a number'}
try:
reset_value = float(reset_value)
except:
return {'error': 'reset_value is not a number'}
if monotony == 'increasing':
if not np.greater_equal(new_ts['value'], reset_value).all():
return {'error': 'value lower than reset_value'}
elif max_value and not np.less_equal(new_ts['value'], max_value).all():
return {'error': 'value greater than max_value'}
elif monotony == 'decreasing':
if not np.less_equal(new_ts['value'].values, reset_value).all():
return {'error': 'value greater than reset value'}
elif max_value and not np.greater_equal(new_ts['value'], max_value).all():
return {'error': 'value lower than max_value'}
new_ts['old_value'] = new_ts['value'].shift()
new_ts = new_ts.drop(new_ts.index[0])
new_ts['increments'] = new_ts.apply(single_inc, axis = 1, monotony = monotony, \
max_value = max_value, reset_value = reset_value)
output_ts = pd.DataFrame()
output_ts['value'] = new_ts['increments']
return output_ts