本文整理汇总了Python中numpy.int_函数的典型用法代码示例。如果您正苦于以下问题:Python int_函数的具体用法?Python int_怎么用?Python int_使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了int_函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _find_nearest_node_ndarray
def _find_nearest_node_ndarray(rmg, coords, mode='raise'):
column_indices = np.int_(
np.around((coords[0] - rmg.node_x[0]) / rmg.node_spacing))
row_indices = np.int_(
np.around((coords[1] - rmg.node_y[0]) / rmg.node_spacing))
return rmg.grid_coords_to_node_id(row_indices, column_indices, mode=mode)
示例2: Init
def Init(self):
#boundary and domain condition
self.lat = io.read_PETSc_vec(self.config["-Metos3DBoundaryConditionInputDirectory"][0] + self.config["-Metos3DLatitudeFileFormat"][0])
dz = io.read_PETSc_vec(self.config["-Metos3DDomainConditionInputDirectory"][0] + self.config["-Metos3DLayerHeightFileFormat"][0])
z = io.read_PETSc_vec(self.config["-Metos3DDomainConditionInputDirectory"][0] + self.config["-Metos3DLayerDepthFileFormat"][0])
self.lsm = io.read_PETSc_mat(self.config["-Metos3DProfileInputDirectory"][0] + self.config["-Metos3DProfileMaskFile"][0])
self.fice = np.zeros((self.profiles,np.int_(self.config["-Metos3DIceCoverCount"][0])),dtype=np.float_)
for i in range(np.int_(self.config["-Metos3DIceCoverCount"][0])):
self.fice[:,i] = io.read_PETSc_vec(self.config["-Metos3DBoundaryConditionInputDirectory"][0] + (self.config["-Metos3DIceCoverFileFormat"][0] % i))
self.bc = np.zeros(2,dtype=np.float_)
self.dc = np.zeros((self.ny,2),dtype=np.float_)
self.dc[:,0] = z
self.dc[:,1] = dz
self.u = np.array(self.config["-Metos3DParameterValue"],dtype=np.float_)
self.dt = np.float_(self.config["-Metos3DTimeStep"][0])
self.nspinup = np.int_(self.config["-Metos3DSpinupCount"][0])
self.ntimestep = np.int_(self.config["-Metos3DTimeStepCount"][0])
self.matrixCount = np.int_(self.config["-Metos3DMatrixCount"][0])
self.U_PODN = np.load(self.config["-Metos3DMatrixInputDirectory"][0] +'N/'+ self.config["-Metos3DMatrixPODFileFormat"][0])
self.U_PODDOP = np.load(self.config["-Metos3DMatrixInputDirectory"][0] +'DOP/'+ self.config["-Metos3DMatrixPODFileFormat"][0])
self.U_DEIMN = np.load(self.config["-Metos3DMatrixInputDirectory"][0] +'N/'+ self.config["-Metos3DMatrixDEIMFileFormat"][0])
self.U_DEIMDOP = np.load(self.config["-Metos3DMatrixInputDirectory"][0] +'DOP/'+ self.config["-Metos3DMatrixDEIMFileFormat"][0])
self.DEIM_IndicesN = np.load(self.config["-Metos3DMatrixInputDirectory"][0] +'N/'+ self.config["-Metos3DDEIMIndicesFileFormat"][0])
self.DEIM_IndicesDOP = np.load(self.config["-Metos3DMatrixInputDirectory"][0] +'DOP/'+ self.config["-Metos3DDEIMIndicesFileFormat"][0])
self.AN = np.ndarray(shape=(self.matrixCount,self.U_PODN.shape[1],self.U_PODN.shape[1]), dtype=np.float_, order='C')
self.ADOP = np.ndarray(shape=(self.matrixCount,self.U_PODDOP.shape[1],self.U_PODDOP.shape[1]), dtype=np.float_, order='C')
for i in range(0,self.matrixCount):
self.AN[i] = np.load(self.config["-Metos3DMatrixInputDirectory"][0] +'N/'+ self.config["-Metos3DMatrixReducedFileFormat"][0] % i)
self.ADOP[i] = np.load(self.config["-Metos3DMatrixInputDirectory"][0] +'DOP/'+ self.config["-Metos3DMatrixReducedFileFormat"][0] % i)
self.PN = np.ndarray(shape=(self.matrixCount,self.U_PODN.shape[1],self.U_DEIMN.shape[1]), dtype=np.float_, order='C')
self.PDOP = np.ndarray(shape=(self.matrixCount,self.U_PODDOP.shape[1],self.U_DEIMDOP.shape[1]), dtype=np.float_, order='C')
for i in range(0,self.matrixCount):
self.PN[i] = np.load(self.config["-Metos3DMatrixInputDirectory"][0] +'N/'+ self.config["-Metos3DMatrixReducedDEINFileFormat"][0] % i)
self.PDOP[i] = np.load(self.config["-Metos3DMatrixInputDirectory"][0] +'DOP/'+ self.config["-Metos3DMatrixReducedDEINFileFormat"][0] % i)
#precomputin the interplaton indices for a year
[self.interpolation_a,self.interpolation_b,self.interpolation_j,self.interpolation_k] = util.linearinterpolation(2880,12,0.0003472222222222)
self.yN = np.ones(self.ny,dtype=np.float_) * np.float_(self.config["-Metos3DTracerInitValue"])[0]
self.yDOP = np.ones(self.ny,dtype=np.float_) * np.float_(self.config["-Metos3DTracerInitValue"])[1]
self.y_redN = np.dot(self.U_PODN.T,self.yN)
self.y_redDOP = np.dot(self.U_PODDOP.T,self.yDOP)
self.qN = np.zeros(self.DEIM_IndicesN.shape[0],dtype=np.float_)
self.qDOP = np.zeros(self.DEIM_IndicesDOP.shape[0],dtype=np.float_)
self.J,self.PJ = util.generateIndicesForNonlinearFunction(self.lsm,self.profiles,self.ny)
self.out_pathN = self.config["-Metos3DTracerOutputDirectory"][0] +self.config["-Metos3DSpinupMonitorFileFormatPrefix"][0] + self.config["-Metos3DSpinupMonitorFileFormatPrefix"][1] +self.config["-Metos3DTracerOutputFile"][0]
self.out_pathDOP = self.config["-Metos3DTracerOutputDirectory"][0] +self.config["-Metos3DSpinupMonitorFileFormatPrefix"][0] + self.config["-Metos3DSpinupMonitorFileFormatPrefix"][1] +self.config["-Metos3DTracerOutputFile"][1]
self.monitor_path = self.config["-Metos3DTracerMointorDirectory"][0] +self.config["-Metos3DSpinupMonitorFileFormatPrefix"][0] + self.config["-Metos3DSpinupMonitorFileFormatPrefix"][1] +self.config["-Metos3DTracerOutputFile"][0]
示例3: add_pbc_jncol
def add_pbc_jncol(data,rand):
'''If the input is a periodic box and los is along z axis then jacknife region is simply equal area region in the x-y space which can be done in using this function and not needed to be supplied with data file make sure that njn is a perfect square'''
#adding jacknife regions
if(args.njn>0 and args.los==1):
POS_min,POS_max, blen=getminmax(data,rand=rand)
NJNx=np.int(np.sqrt(args.njn))
NJNy=np.int(args.njn/NJNx)
for ii in (0,2):
if(ii==0): mat=data
else: mat=rand
#get the x and y indx as integers
indx=np.int_(NJNx*(mat[:,0]-POS_min[0])/blen[0])
indy=np.int_(NJNy*(mat[:,1]-POS_min[1])/blen[1])
#apply modulo operation on x an y index
indx=np.mod(indx,NJNx)
indy=np.mod(indy,NJNy)
#convert index to integers
#indx.astype(np.int64); indy.astype(np.int64);
jnreg=NJNy*indx+indy
mat=np.column_stack([mat,jnreg])
if(ii==0): data=mat
else: rand=mat
return data,rand
else:
print('not appropriate input to add jacknife internally')
sys.exit()
return 0
示例4: initialize
def initialize(video_capture,rot_angle, pt1, pt2, ppl_width):
#read image
ret, image = video_capture.read()
(hh, ww) = image.shape[:2]
#rotate
M = None;
if (rot_angle != 0):
center = (ww / 2, hh / 2)
M = cv2.getRotationMatrix2D(center, rot_angle, 1.0)
image = imutils.resize(image, width=min(400, image.shape[1]))
##mask after resize
resize_ratio = image.shape[1] / float(ww)
#max_min_ppl_size
ppl_size=[50,100]
ppl_size[0] = np.ceil(ppl_width * resize_ratio * 1.4)
ppl_size[1] = np.ceil(ppl_width * resize_ratio * 0.8)
#print max_ppl_size
ROI_1 = np.int_(np.dot(pt1,resize_ratio))
ROI_2 = np.int_(np.dot(pt2,resize_ratio))
return [ww, hh, M, ppl_size, ROI_1, ROI_2]
示例5: DepositDataToGrid3D
def DepositDataToGrid3D(data, coords, N, hsml, gridres, rmax, griddata):
norm = 2.5464790894703255 #8/np.pi for 3D
grid_dx = 2*rmax/(gridres-1)
zSqr = coords[:,2]*coords[:,2]
hsml_plane = np.sqrt(hsml[:]*hsml[:] - zSqr)
shift_coords = coords[:,:2] + rmax
gxmin = np.int_((shift_coords[:,0] - hsml_plane[:])/grid_dx + 0.5)
gxmax = np.int_((shift_coords[:,0] + hsml_plane[:])/grid_dx)
gymin = np.int_((shift_coords[:,1] - hsml_plane[:])/grid_dx + 0.5)
gymax = np.int_((shift_coords[:,1] + hsml_plane[:])/grid_dx)
for i in xrange(N):
h = hsml[i]
mh3 = data[i,:]/h**3
z2 = zSqr[i]
if gxmin[i] < 0:
gxmin[i] = 0
if gxmax[i] > gridres - 1:
gxmax[i] = gridres - 1
if gymin[i] < 0:
gymin[i] = 0
if gymax[i] > gridres - 1:
gymax[i] = gridres - 1
for gx in xrange(gxmin[i], gxmax[i]+1):
for gy in xrange(gymin[i], gymax[i]+1):
q = np.sqrt((shift_coords[i,0] - gx*grid_dx)**2 + (shift_coords[i,1] - gy*grid_dx)**2 + z2)/h
if q <= 0.5:
griddata[gy, gx,:] += (1 - 6*q**2 + 6*q**3) * mh3
elif q <= 1.0:
griddata[gy, gx,:] += (2*(1-q)**3) * mh3
griddata[:] = norm*griddata[:]
示例6: get_many_patches
def get_many_patches(image, patch_shape, centers,
flat=True, step=1, force_pure_python=False):
"""Return the patches at given centers"""
patch_shape = tuple(patch_shape)
centers = np.reshape(np.asarray(centers, dtype=np.int_), (-1, len(patch_shape)))
ndims = len(patch_shape)
if ndims in [2,3] and "_get_many_patches" in globals() and not force_pure_python:
# 3d version (efficient Cython implementation)
patches = _get_many_patches(ndims, image, patch_shape, centers, step)
else:
# Extract patches (pure Python version)
grid_slices = tuple(slice(-(i//2), i-i//2, step) for i in patch_shape)
grid = np.reshape(np.mgrid[grid_slices], (len(patch_shape), -1))
points = tuple(np.int_(centers.T[:,:,np.newaxis]) + np.int_(grid[:,np.newaxis,:]))
patches = image[points]
# Compute the final patch shape taking into acount the step
final_shape = tuple((sh - 1)/step + 1 for sh in patch_shape)
channels = image.shape[len(patch_shape):]
if not flat:
patches = np.reshape(patches, (-1,) + tuple(final_shape) + channels)
else:
patches = np.reshape(patches, (len(patches), np.prod(final_shape + channels)))
return patches
示例7: azimToBeam
def azimToBeam(self, azim):
''' Get azimuth of given beam. Return a negative beam number (offset by
one instead of zero) if the azimuth corresponds to the back lobe.
Return np.nan if the azimuth is not covered by any beam.
**Args**:
* **azim** (float): beam azimuth [deg. East]
**Returns**:
* **beam** (int): beam number
'''
import numpy as np
# Assume the azimuth comes from the front lobe
phi = np.radians(azim - self.boresite)
delta = np.degrees(np.arctan2(np.sin(phi), np.cos(phi)))
beam = np.round(delta / self.bmsep + (self.maxbeam - 1) / 2.)
if beam < 0.0 or beam > self.maxbeam:
# This azimuth lies outside the front lobe
phi = np.radians(self.boresite - azim - 180.0)
delta = np.degrees(np.arctan2(np.sin(phi), np.cos(phi)))
beam = np.round(delta / self.bmsep + (self.maxbeam - 1) / 2.)
# Seperate back lobe azimuths from azimuths outside of either
# field-of-view
if beam >= 0 and beam < self.maxbeam:
beam = -np.int_(beam + 1)
else:
beam = np.nan
else:
beam = np.int_(beam)
return beam
示例8: EField
def EField(X,Q,gamma,kern,steps):
N=X.shape[0];
X[:,2]=X[:,2]*gamma
X=X/steps
X_min=np.min(X,axis=0)
X_mid=np.dot(Q,X)/np.sum(Q);
X_off=np.floor(X_min-X_mid)+X_mid;
X=X-X_off
nx,ny,nz=np.int_(3+np.floor(np.max(X,axis=0)))
nzny=nz*ny
Xi=np.int_(np.floor(X)+1)
inds=np.int_(Xi[:,0]*nzny+Xi[:,1]*nz+Xi[:,2]) # 3d -> 1d
q=np.bincount(inds,Q,nzny*nx)
print len(q), nx*ny*nz
q=q.reshape(nx,ny,nz)
#t0=time.time()
print q.shape, steps
p,kern=Phi(q,kern,steps)
#t1=time.time(); print t1-t0
Ex=np.zeros(p.shape);Ey=np.zeros(p.shape);Ez=np.zeros(p.shape);
Ex[:nx-1,:,:]=(p[:nx-1,:,:]-p[1:nx,:,:])/steps[0]
Ey[:,:ny-1,:]=(p[:,:ny-1,:]-p[:,1:ny,:])/steps[1]
Ez[:,:,:nz-1]=(p[:,:,:nz-1]-p[:,:,1:nz])/steps[2]
Exyz=np.zeros((N,3))
Exyz[:,0]=ndimage.map_coordinates(Ex,np.c_[X[:,0],X[:,1]+0.5,X[:,2]+0.5].T,order=1)*gamma
Exyz[:,1]=ndimage.map_coordinates(Ey,np.c_[X[:,0]+0.5,X[:,1],X[:,2]+0.5].T,order=1)*gamma
Exyz[:,2]=ndimage.map_coordinates(Ez,np.c_[X[:,0]+0.5,X[:,1]+0.5,X[:,2]].T,order=1)
#t1=time.time(); print t1-t0
return Exyz
示例9: totalPower
def totalPower(latitude, timeTuple):
global shell_normal
global shell_faceO
global shell_vertO
matrixImport()
month = timeTuple[1]
day = timeTuple[2]
hour = timeTuple[3]
heading = 85 # Moving SSE
shell_heading = heading
shell_azimuths = 180/math.pi*numpy.arctan2(-shell_normal[:,1] ,shell_normal[:,0]) + heading
shell_tilts = 90 - 180/math.pi*numpy.arcsin(shell_normal[:,2])
a = shell_vertO[numpy.int_(shell_faceO[:,0]),:]
b = shell_vertO[numpy.int_(shell_faceO[:,1]),:]
c = shell_vertO[numpy.int_(shell_faceO[:,2]),:]
v1 = b - a
v2 = c - a
temp = numpy.cross(v1,v2)**2
temp = numpy.sum(temp, 1)
shell_Area = 0.5*temp**0.5
#shell_area = numpy.sum(shell_Area)
shell_flux = incident_radiation(month, day, hour, shell_tilts, shell_azimuths, latitude)
shell_power = numpy.dot(shell_flux,shell_Area)
#shell_fluxavg = shell_power/shell_area
#return shell_fluxavg
return shell_power
示例10: _find_nearest_node_ndarray
def _find_nearest_node_ndarray(rmg, coords, mode='raise'):
"""Find the node nearest to a point.
Parameters
----------
rmg : RasterModelGrid
A RasterModelGrid.
coords : tuple of float
Coordinates of test points as *x*, then *y*.
mode : {'raise', 'wrap', 'clip'}, optional
What to do with out-of-bounds indices (as with
numpy.ravel_multi_index).
Returns
-------
ndarray
Nodes that are closest to the points.
Examples
--------
>>> from landlab.grid.raster_funcs import _find_nearest_node_ndarray
>>> from landlab import RasterModelGrid
>>> import numpy as np
>>> grid = RasterModelGrid((4, 5))
>>> _find_nearest_node_ndarray(grid, (.25, 1.25))
5
>>> _find_nearest_node_ndarray(grid, (.75, 2.25))
11
"""
column_indices = np.int_(
np.around((coords[0] - rmg.node_x[0]) / rmg.node_spacing))
row_indices = np.int_(
np.around((coords[1] - rmg.node_y[0]) / rmg.node_spacing))
return rmg.grid_coords_to_node_id(row_indices, column_indices, mode=mode)
示例11: getSuperPixelColorHistogram
def getSuperPixelColorHistogram(superpixels, image):
colors = []
#newIm = image
numSuperpixels = np.max(superpixels)+1
for i in xrange(0,numSuperpixels):
temp = np.zeros((1,64),dtype = float)
indices = np.where(superpixels==i)
color = image[indices]
for j in xrange(0,color.shape[0]):
r = np.int_(color[j][0]/0.25)
g = np.int_(color[j][1]/0.25)
b = np.int_(color[j][2]/0.25)
if r ==4:
r = 3
if g == 4:
g = 3
if b == 4:
b = 3
x = 16*r+4*g+b*1
temp[0][x] = temp[0][x]+1
#min_max_scaler = preprocessing.MinMaxScaler()
#t = min_max_scaler.fit_transform(temp[0])
#print t
colors.append(temp[0])
#showPlots(newIm, numSuperpixels, superpixels)
return np.array(colors)
示例12: main
def main():
# объект dtype=float32
f = np.float32(1.0)
print('Объект: {}\nТип данных: {}'.format(f, type(f)))
# объект np.ndarray, полученный из python списка, с автоматическим определеникм dtype
ar = np.array([1, 2, 3])
print('Массив: {}\nТип данных массива (dtype): {}\nТип данных элемента массива: {}'.format(ar, type(ar), type(ar[0])))
# объект np.ndarray, полученный из python списка
ar_int32 = np.array([1, 2, 3], dtype=np.int32)
print('Массив: {}\nТип данных массива (dtype): {}\nТип данных элемента массива: {}'.format(ar_int32, type(ar_int32), type(ar_int32[0])))
# объект np.ndarray, полученный при помощи конструктора типа dtype
i_int = np.int_(10)
print('Объект: {}\nТип данных: {}'.format(i_int, type(i_int)))
ar_int = np.int_([10, 20, 30])
print('Массив: {}\nТип данных масива (dtype: {}\nТип данных элемента массива: {}'.format(ar_int, type(ar_int), type(ar_int[0])))
ar_bool = np.bool_([0, 1, 0, 0, 1, 1, 1])
print('Тип данных массива: {}'.format(ar_bool.dtype))
ar_int64 = np.array(range(100), dtype=np.int_)
print('Тип данных массива: {}'.format(ar_int64.dtype))
ar_float = np.array([1.03, 1, -5.9, 4.6], dtype=np.float16)
print('Массив ndarray: {}'.format(ar_float))
print('Тип данных массива: {}'.format(type(ar_float)))
ar_scalar = ar_float[3]
print('Значение скаляра массива: {}'.format(ar_scalar))
print('Тип данных скаляра массива: {}'.format(ar_scalar.dtype))
示例13: project_lane_lines
def project_lane_lines(img,left_fitx,right_fitx,yvals):
# Create an image to draw the lines on
color_warp = np.zeros_like(img).astype(np.uint8)
# Recast the x and y points into usable format for cv2.fillPoly()
pts_left = np.array([np.transpose(np.vstack([left_fitx, yvals]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, yvals])))])
pts = np.hstack((pts_left, pts_right))
# Draw the lane onto the warped blank image
cv2.polylines(color_warp, np.int_([pts]), isClosed=False, color=(255,0,0), thickness=20)
cv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0))
undist = undistort(img)
#sp = (550, 310)
#ep = (700, 460)
#for i in range(4):
#center = ((ep[0] + sp[0])/2 , )
#cv2.rectangle(undist, (550, 310), (700, 460), (0,0,255), 4)
unwarp,Minv = warp(img,bird_view=False)
# Warp the blank back to original image space using inverse perspective matrix (Minv)
newwarp = cv2.warpPerspective(color_warp, Minv, (img.shape[1], img.shape[0]))
# Combine the result with the original image
result = cv2.addWeighted(undist, 1, newwarp, 0.3, 0)
return result
示例14: get_data_set
def get_data_set():
data_set = []
categories = {}
next_cat_index = 1
first_line = True
with open ('original_data/numerai_training_data.csv', 'r') as csvfile:
spamreader = csv.reader(csvfile)
for row in spamreader:
if not first_line: #Skip first line
data_set_item = np.int_(row[0:14]).astype(np.int)
category = row[14]
try:
#if KeyError add a new category
cat_index = categories[category]
except KeyError as e:
categories[category] = next_cat_index
next_cat_index += 1
cat_index = categories[category]
data_set_item = np.append(data_set_item, np.int_([cat_index]))
data_set_item = np.append(data_set_item, np.int_(row[15:]).astype(np.int))
data_set.append(data_set_item)
else:
first_line = False
data_set = np.int_(data_set)
return (data_set, categories)
示例15: draw_hough_line
def draw_hough_line(image, dist, theta, color=0):
"""
Draws a line described by the hough transform to an image
:param image: Image to draw on
:param dist: Hough transform distance
:param theta: Hough transform angle
:param color: intensity to draw line
"""
rows, cols = image.shape
if abs(theta) < pi/4:
# Find the x (col) intercepts
x0 = int_(dist/cos(theta))
x1 = int_(x0 - rows * sin(theta))
intercepts = (0, x0, rows, x1)
else:
# Find the y (row) intercepts
y0 = int_(dist/sin(theta))
y1 = int_(y0 + cols * cos(theta))
intercepts = (y0, 0, y1, cols)
r, c = line(*intercepts)
# Check to make sure each point stays in the image bounds and draw it
for n in range(r.size):
if r[n] >= 0 and c[n] >= 0:
if r[n] < rows and c[n] < cols:
image[r[n], c[n]] = color