本文整理汇总了Python中numpy.int64函数的典型用法代码示例。如果您正苦于以下问题:Python int64函数的具体用法?Python int64怎么用?Python int64使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了int64函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: step
def step(self):
'''
For each timestep, a sparse linear system (Ax = C) need to be solved to update ice surface elevation
'''
### update diffusivity for each timestep
self.diffusion_update()
D_sum = self.D_IC_jc + self.D_IP_jc + self.D_ic_JC + self.D_ic_JP
row = np.int64([[self.ic_jc],[self.ic_jc],[self.ic_jc],[self.ic_jc],[self.ic_jc]]).flatten()
col = np.int64([[self.im_jc],[self.ip_jc],[self.ic_jm],[self.ic_jp],[self.ic_jc]]).flatten()
val = np.array([[-self.OMEGA * self.D_IC_jc],[-self.OMEGA * self.D_IP_jc],[-self.OMEGA * self.D_ic_JC],[-self.OMEGA * self.D_ic_JP],[1/self.dt + self.OMEGA * D_sum]]).flatten()
C = (1 - self.OMEGA) * ((self.D_IC_jc * self.S[self.im_jc]) + self.D_IP_jc * self.S[self.ip_jc] + self.D_ic_JC * self.S[self.ic_jm] + self.D_ic_JP * \
self.S[self.ic_jp]) + (1/self.dt - (1 - self.OMEGA) * D_sum) * self.S[self.ic_jc] + self.b_dot
C = C.flatten()
### construct a sparse matrix A
A = csr_matrix( (val,(row,col)), shape=(self.N, self.N))
# print 'solving'
S_out = linalg.spsolve(A,C)
# print 'solved'
### ice thickness couldn't be negative, ice surface elevation should not be less than bed elevation
S_out[S_out < self.B] = self.B[S_out < self.B]
t_n = self.t + self.dt
return S_out, t_n
示例2: test_asset_comparisons
def test_asset_comparisons(self):
s_23 = Asset(23)
s_24 = Asset(24)
self.assertEqual(s_23, s_23)
self.assertEqual(s_23, 23)
self.assertEqual(23, s_23)
self.assertEqual(int32(23), s_23)
self.assertEqual(int64(23), s_23)
self.assertEqual(s_23, int32(23))
self.assertEqual(s_23, int64(23))
# Check all int types (includes long on py2):
for int_type in integer_types:
self.assertEqual(int_type(23), s_23)
self.assertEqual(s_23, int_type(23))
self.assertNotEqual(s_23, s_24)
self.assertNotEqual(s_23, 24)
self.assertNotEqual(s_23, "23")
self.assertNotEqual(s_23, 23.5)
self.assertNotEqual(s_23, [])
self.assertNotEqual(s_23, None)
# Compare to a value that doesn't fit into a platform int:
self.assertNotEqual(s_23, sys.maxsize + 1)
self.assertLess(s_23, s_24)
self.assertLess(s_23, 24)
self.assertGreater(24, s_23)
self.assertGreater(s_24, s_23)
示例3: calculateComplexDerefOpAddress
def calculateComplexDerefOpAddress(complexDerefOp, registerMap):
match = re.match("((?:\\-?0x[0-9a-f]+)?)\\(%([a-z0-9]+),%([a-z0-9]+),([0-9]+)\\)", complexDerefOp)
if match != None:
offset = 0L
if len(match.group(1)) > 0:
offset = long(match.group(1), 16)
regA = RegisterHelper.getRegisterValue(match.group(2), registerMap)
regB = RegisterHelper.getRegisterValue(match.group(3), registerMap)
mult = long(match.group(4), 16)
# If we're missing any of the two register values, return None
if regA == None or regB == None:
if regA == None:
return (None, "Missing value for register %s" % match.group(2))
else:
return (None, "Missing value for register %s" % match.group(3))
if RegisterHelper.getBitWidth(registerMap) == 32:
val = int32(uint32(regA)) + int32(uint32(offset)) + (int32(uint32(regB)) * int32(uint32(mult)))
else:
# Assume 64 bit width
val = int64(uint64(regA)) + int64(uint64(offset)) + (int64(uint64(regB)) * int64(uint64(mult)))
return (long(val), None)
return (None, "Unknown failure.")
示例4: KMeansConfig
def KMeansConfig(dataTable, k, eps = 0.00001, srcDims=100000000000,gpuMemSize = 512, settings = {}):
"""
Creates all the memory/data settings to run GPU accelerated KMeans.
"""
settings = dataConfig(dataTable,settings)
settings["sourceDims"] = min(settings["sourceDims"],srcDims)
#XXX: determine memory and thread sizes from device
settings["memSize"] = gpuMemSize*1024*1024
settings["maxThreads"] = 1024
#set up chunk sizes
memoryPerElement = 4*(settings["sourceDims"]*2+2) + 20*4 #this is an estimated memory used per element
settings["chunkSize"] = min(int(math.ceil(float(settings["memSize"])/memoryPerElement)),settings["dataLength"])
settings["lastChunkSize"] = ((settings["dataLength"]-1) % settings["chunkSize"]) + 1
#create kernel gridsize tuples
settings["block"] = (settings["maxThreads"],1,1)
settings["grid"] = (max(int(math.ceil(float(settings["chunkSize"])/settings["maxThreads"])),1),1,1)
#precalculate all constant kernel params
settings["dimensions"] = numpy.int64(settings["sourceDims"])
settings["k"] = numpy.int64(k)
settings["eps"] = numpy.float32(eps)
settings["dataSize"] = numpy.int64(settings["dataLength"])
settings["chunkSize"] = numpy.int64(settings["chunkSize"])
settings["maxThreads"] = numpy.int64(settings["maxThreads"])
return settings
示例5: test_cf_timedelta
def test_cf_timedelta(self):
examples = [
('1D', 'days', np.int64(1)),
(['1D', '2D', '3D'], 'days', np.array([1, 2, 3], 'int64')),
('1h', 'hours', np.int64(1)),
('1ms', 'milliseconds', np.int64(1)),
('1us', 'microseconds', np.int64(1)),
(['NaT', '0s', '1s'], None, [np.nan, 0, 1]),
(['30m', '60m'], 'hours', [0.5, 1.0]),
]
if pd.__version__ >= '0.16':
# not quite sure why, but these examples don't work on older pandas
examples.extend([(np.timedelta64('NaT', 'ns'), 'days', np.nan),
(['NaT', 'NaT'], 'days', [np.nan, np.nan])])
for timedeltas, units, numbers in examples:
timedeltas = pd.to_timedelta(timedeltas, box=False)
numbers = np.array(numbers)
expected = numbers
actual, _ = conventions.encode_cf_timedelta(timedeltas, units)
self.assertArrayEqual(expected, actual)
self.assertEqual(expected.dtype, actual.dtype)
if units is not None:
expected = timedeltas
actual = conventions.decode_cf_timedelta(numbers, units)
self.assertArrayEqual(expected, actual)
self.assertEqual(expected.dtype, actual.dtype)
expected = np.timedelta64('NaT', 'ns')
actual = conventions.decode_cf_timedelta(np.array(np.nan), 'days')
self.assertArrayEqual(expected, actual)
示例6: test_gh_5430
def test_gh_5430():
# At least one of these raises an error unless gh-5430 is
# fixed. In py2k an int is implemented using a C long, so
# which one fails depends on your system. In py3k there is only
# one arbitrary precision integer type, so both should fail.
sigma = np.int32(1)
out = sndi._ni_support._normalize_sequence(sigma, 1)
assert_equal(out, [sigma])
sigma = np.int64(1)
out = sndi._ni_support._normalize_sequence(sigma, 1)
assert_equal(out, [sigma])
# This worked before; make sure it still works
sigma = 1
out = sndi._ni_support._normalize_sequence(sigma, 1)
assert_equal(out, [sigma])
# This worked before; make sure it still works
sigma = [1, 1]
out = sndi._ni_support._normalize_sequence(sigma, 2)
assert_equal(out, sigma)
# Also include the OPs original example to make sure we fixed the issue
x = np.random.normal(size=(256, 256))
perlin = np.zeros_like(x)
for i in 2**np.arange(6):
perlin += sndi.filters.gaussian_filter(x, i, mode="wrap") * i**2
# This also fixes gh-4106, show that the OPs example now runs.
x = np.int64(21)
sndi._ni_support._normalize_sequence(x, 0)
示例7: testInt
def testInt(self):
num = np.int(2562010)
self.assertEqual(np.int(ujson.decode(ujson.encode(num))), num)
num = np.int8(127)
self.assertEqual(np.int8(ujson.decode(ujson.encode(num))), num)
num = np.int16(2562010)
self.assertEqual(np.int16(ujson.decode(ujson.encode(num))), num)
num = np.int32(2562010)
self.assertEqual(np.int32(ujson.decode(ujson.encode(num))), num)
num = np.int64(2562010)
self.assertEqual(np.int64(ujson.decode(ujson.encode(num))), num)
num = np.uint8(255)
self.assertEqual(np.uint8(ujson.decode(ujson.encode(num))), num)
num = np.uint16(2562010)
self.assertEqual(np.uint16(ujson.decode(ujson.encode(num))), num)
num = np.uint32(2562010)
self.assertEqual(np.uint32(ujson.decode(ujson.encode(num))), num)
num = np.uint64(2562010)
self.assertEqual(np.uint64(ujson.decode(ujson.encode(num))), num)
示例8: __init__
def __init__(self, dmgr, channel, core_device="core"):
self.core = dmgr.get(core_device)
self.channel = channel
# in RTIO cycles
self.previous_timestamp = numpy.int64(0)
self.acc_width = numpy.int64(24)
示例9: backward_propagation_with_regularization
def backward_propagation_with_regularization(X,Y,cache,lambd):
'''
实现我们添加了L2正则化的模型的后向传播
:param X: 输入数据集,维度为(输入节点数量,数据集里面的数量
:param Y: 标签,维度为(输出节点数量,数据集里面的数量
:param cache: 来自forward_propagation()的cache输出
:param lambd: regularization超参数,实数
:return:
gradients - 一个包含了每个参数\激活值和预激活值变量的替独子点
'''
m = X.shape[1]
(Z1,A1,W1,b1,Z2,A2,W2,b2,Z3,A3,W3,b3)=cache
dZ3 = A3-Y
dW3 = (1/m)*np.dot(dZ3,A2.T)+((lambd*W3)/m)
db3 = (1/m)*np.sum(dZ3,axis = 1,keepdims=True)
dA2 = np.dot(W3.T,dZ3)
dZ2 = np.multiply(dA2,np.int64(A2>0))
dW2 = (1/m)*np.dot(dZ2,A1.T)+((lambd*W2)/m)
db2 = (1/m)*np.sum(dZ2,axis = 1,keepdims=True)
dA1 = np.dot(W2.T,dZ2)
dZ1 = np.multiply(dA1,np.int64(A1>0))
dW1 = (1/m)*np.dot(dZ1,X.T)+((lambd*W1)/m)
db1 = (1/m)*np.sum(dZ1,axis =1,keepdims = True)
gradients = {
'dZ3':dZ3,'dW3':dW3,'db3':db3,'dA2':dA2,
'dZ2':dZ2,'dW2':dW2,'db2':db2,'dA1':dA1,
'dZ1':dZ1,'dW1':dW1,'db1':db1
}
return gradients
示例10: histogram_on_speed
def histogram_on_speed(self, probmap):
cx = probmap.shape[1] / 2
cy = probmap.shape[0] / 2
binsize = 1
binnum = np.int64(self.nbr_radius / binsize) + 1
hist = np.zeros((binnum,1))
if probmap[cy,cx] == probmap.max():
return hist # no optical flow found and this observation will be discarded
for y in range(probmap.shape[0]):
for x in range(probmap.shape[1]):
if probmap[y,x] < 0.0001:
continue
dx = np.abs(x - cx)
dy = np.abs(y - cy)
d = np.maximum( dx, dy )
d = np.int64(d/binsize)
if d >= binnum:
d = binnum - 1
hist[d,0] += probmap[y,x]
hist = hist /(0.001 + np.sum(hist) )
return hist
示例11: antnum_list_to_baselines
def antnum_list_to_baselines(self, antnums=[]):
'''
antnums will be a list of either tuples of strings, or strings
this implementation allows the user to input both 0_1 and 1_0
and it will return the expected baseline (0_1) in both cases
'''
antnums_in_data = set(self.ant_1_array)
baselines = set()
for i in antnums:
if isinstance(i, tuple):
ant1, ant2 = np.int64(i)
if ant1 not in antnums_in_data:
raise ValueError('No antenna {} found in data.'.format(ant1))
if ant2 not in antnums_in_data:
raise ValueError('No antenna {} found in data.'.format(ant2))
baselines.add(self.antnums_to_baseline(min(ant1, ant2), max(ant1, ant2)))
else:
ant = np.int64(i)
if ant not in antnums_in_data:
raise ValueError('No antenna {} found in data.'.format(ant))
for j in antnums_in_data:
baselines.add(self.antnums_to_baseline(min(ant, j), max(ant, j)))
return baselines
示例12: test_trunc
def test_trunc(self):
xsg_test_data = loadmat('rounding_behavior_Fix_8_7_to_Fix_5_4.mat')
input_fractWidth = int(xsg_test_data['input_fract_len'][0,0])
input_bit_width = int(xsg_test_data['input_bit_width'][0,0])
input_intWidth = input_bit_width - input_fractWidth - 1
input_dtype = (input_intWidth, input_fractWidth)
output_fractWidth = int(xsg_test_data['output_fract_len'][0,0])
output_bit_width = int(xsg_test_data['output_bit_width'][0,0])
output_intWidth = output_bit_width - output_fractWidth - 1
output_dtype = (output_intWidth, output_fractWidth)
input_int = np.int64(xsg_test_data['input_int'].ravel())
input_float = input_int * (2 ** -input_fractWidth);
trunc_int = np.int64(xsg_test_data['trunc_int'].ravel())
trunc_float = trunc_int * (2 ** -output_fractWidth)
N = len(input_int)
for k in range(N):
input = FixedInt(input_float[k], dtype=input_dtype)
input_trunc = fixed_point.rounding.round_trunc(input, output_dtype)
self.assertTrue(input_trunc.fValue == trunc_float[k])
示例13: __init__
def __init__(self, dmgr, channel, core_device="core"):
self.core = dmgr.get(core_device)
self.ref_period_mu = seconds_to_mu(self.core.coarse_ref_period, self.core)
self.channel = channel
self.write_period_mu = numpy.int64(0)
self.read_period_mu = numpy.int64(0)
self.xfer_period_mu = numpy.int64(0)
示例14: testSaveRestoreNumpyState
def testSaveRestoreNumpyState(self):
directory = self.get_temp_dir()
prefix = os.path.join(directory, "ckpt")
save_state = _NumpyState()
saver = util.Checkpoint(numpy=save_state)
save_state.a = numpy.ones([2, 2])
save_state.b = numpy.ones([2, 2])
save_state.b = numpy.zeros([2, 2])
save_state.c = numpy.int64(3)
self.assertAllEqual(numpy.ones([2, 2]), save_state.a)
self.assertAllEqual(numpy.zeros([2, 2]), save_state.b)
self.assertEqual(3, save_state.c)
first_save_path = saver.save(prefix)
save_state.a[1, 1] = 2.
save_state.c = numpy.int64(4)
second_save_path = saver.save(prefix)
load_state = _NumpyState()
loader = util.Checkpoint(numpy=load_state)
loader.restore(first_save_path).initialize_or_restore()
self.assertAllEqual(numpy.ones([2, 2]), load_state.a)
self.assertAllEqual(numpy.zeros([2, 2]), load_state.b)
self.assertEqual(3, load_state.c)
load_state.a[0, 0] = 42.
self.assertAllEqual([[42., 1.], [1., 1.]], load_state.a)
loader.restore(first_save_path).run_restore_ops()
self.assertAllEqual(numpy.ones([2, 2]), load_state.a)
loader.restore(second_save_path).run_restore_ops()
self.assertAllEqual([[1., 1.], [1., 2.]], load_state.a)
self.assertAllEqual(numpy.zeros([2, 2]), load_state.b)
self.assertEqual(4, load_state.c)
示例15: test_numpy_scalar_conversion_values
def test_numpy_scalar_conversion_values(self):
self.assertEqual(nd.as_py(nd.array(np.bool_(True))), True)
self.assertEqual(nd.as_py(nd.array(np.bool_(False))), False)
self.assertEqual(nd.as_py(nd.array(np.int8(100))), 100)
self.assertEqual(nd.as_py(nd.array(np.int8(-100))), -100)
self.assertEqual(nd.as_py(nd.array(np.int16(20000))), 20000)
self.assertEqual(nd.as_py(nd.array(np.int16(-20000))), -20000)
self.assertEqual(nd.as_py(nd.array(np.int32(1000000000))), 1000000000)
self.assertEqual(nd.as_py(nd.array(np.int64(-1000000000000))),
-1000000000000)
self.assertEqual(nd.as_py(nd.array(np.int64(1000000000000))),
1000000000000)
self.assertEqual(nd.as_py(nd.array(np.int32(-1000000000))),
-1000000000)
self.assertEqual(nd.as_py(nd.array(np.uint8(200))), 200)
self.assertEqual(nd.as_py(nd.array(np.uint16(50000))), 50000)
self.assertEqual(nd.as_py(nd.array(np.uint32(3000000000))), 3000000000)
self.assertEqual(nd.as_py(nd.array(np.uint64(10000000000000000000))),
10000000000000000000)
self.assertEqual(nd.as_py(nd.array(np.float32(2.5))), 2.5)
self.assertEqual(nd.as_py(nd.array(np.float64(2.5))), 2.5)
self.assertEqual(nd.as_py(nd.array(np.complex64(2.5-1j))), 2.5-1j)
self.assertEqual(nd.as_py(nd.array(np.complex128(2.5-1j))), 2.5-1j)
if np.__version__ >= '1.7':
self.assertEqual(nd.as_py(nd.array(np.datetime64('2000-12-13'))),
date(2000, 12, 13))