本文整理汇总了Python中numpy.int32函数的典型用法代码示例。如果您正苦于以下问题:Python int32函数的具体用法?Python int32怎么用?Python int32使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了int32函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: calc_lfp_rf
def calc_lfp_rf(lfp, stimparams, onset = 0.055, offset = 0.08):
time_ix = np.linspace(0, 0.333, lfp.shape[1])
onset_ix = (time_ix < onset).nonzero()[0][-1]
offset_ix = (time_ix > offset).nonzero()[0][0]
onset = np.int32(onset*1000)
offset = np.int32(offset*1000)
freqs = stimparams[:, 0]
attens = stimparams[:, 1]
ufreqs = np.unique(freqs)
uattens = np.unique(attens)
nfreqs = ufreqs.size
nattens = uattens.size
rf = np.zeros((nattens, nfreqs))
for f in range(nfreqs):
ix1 = freqs == ufreqs[f] # trial where the frequency was this frequency
for a in range(nattens):
ix2 = attens == uattens[a] # trial where the attenuation was this attenuation
ix = np.logical_and(ix1, ix2) # trial where both were true
rf[a, f] = np.nanmax(lfp[ix, onset_ix:offset_ix]).mean()
return rf
示例2: interp
def interp(pic,flow):
ys=np.arange(pic.shape[0]*pic.shape[1])/pic.shape[1]
ud=(flow[:,:,0].reshape(-1)+ys)%pic.shape[0]
xs=np.arange(pic.shape[0]*pic.shape[1])%pic.shape[1]
lr=(flow[:,:,1].reshape(-1)+xs)%pic.shape[1]
u=np.int32(np.floor(ud))
d=np.int32(np.ceil(ud))%pic.shape[0]
udiffs=ud-u
udiffs=np.dstack((udiffs,udiffs,udiffs))
l=np.int32(np.floor(lr))
r=np.int32(np.ceil(lr))%pic.shape[1]
ldiffs=lr-l
ldiffs=np.dstack((ldiffs,ldiffs,ldiffs))
ul=pic[u,l,:]
ur=pic[u,r,:]
dl=pic[d,l,:]
dr=pic[d,r,:]
udl=ul*(1-udiffs)+dl*udiffs
udr=ur*(1-udiffs)+dr*udiffs
ans=np.zeros(pic.shape)
ans[ys,xs,:]=udl*(1-ldiffs)+udr*ldiffs
return ans
示例3: rotate
def rotate(data, interpArray, rotation_angle):
for i in range(interpArray.shape[0]):
for j in range(interpArray.shape[1]):
i1 = i - (interpArray.shape[0] / 2. - 0.5)
j1 = j - (interpArray.shape[1] / 2. - 0.5)
x = i1 * numpy.cos(rotation_angle) - j1 * numpy.sin(rotation_angle)
y = i1 * numpy.sin(rotation_angle) + j1 * numpy.cos(rotation_angle)
x += data.shape[0] / 2. - 0.5
y += data.shape[1] / 2. - 0.5
if x >= data.shape[0] - 1:
x = data.shape[0] - 1.1
x1 = numpy.int32(x)
if y >= data.shape[1] - 1:
y = data.shape[1] - 1.1
y1 = numpy.int32(y)
xGrad1 = data[x1 + 1, y1] - data[x1, y1]
a1 = data[x1, y1] + xGrad1 * (x - x1)
xGrad2 = data[x1 + 1, y1 + 1] - data[x1, y1 + 1]
a2 = data[x1, y1 + 1] + xGrad2 * (x - x1)
yGrad = a2 - a1
interpArray[i, j] = a1 + yGrad * (y - y1)
return interpArray
示例4: test_simple_intersect
def test_simple_intersect(self):
cube = iris.cube.Cube(np.array([[1,2,3,4,5],
[2,3,4,5,6],
[3,4,5,6,7],
[4,5,6,7,8],
[5,6,7,8,9]], dtype=np.int32))
lonlat_cs = iris.coord_systems.RotatedGeogCS(10, 20)
cube.add_dim_coord(iris.coords.DimCoord(np.arange(5, dtype=np.float32) * 90 - 180, 'longitude', units='degrees', coord_system=lonlat_cs), 1)
cube.add_dim_coord(iris.coords.DimCoord(np.arange(5, dtype=np.float32) * 45 - 90, 'latitude', units='degrees', coord_system=lonlat_cs), 0)
cube.add_aux_coord(iris.coords.DimCoord(points=np.int32(11), long_name='pressure', units='Pa'))
cube.rename("temperature")
cube.units = "K"
cube2 = iris.cube.Cube(np.array([[1,2,3,4,5],
[2,3,4,5,6],
[3,4,5,6,7],
[4,5,6,7,8],
[5,6,7,8,50]], dtype=np.int32))
lonlat_cs = iris.coord_systems.RotatedGeogCS(10, 20)
cube2.add_dim_coord(iris.coords.DimCoord(np.arange(5, dtype=np.float32) * 90, 'longitude', units='degrees', coord_system=lonlat_cs), 1)
cube2.add_dim_coord(iris.coords.DimCoord(np.arange(5, dtype=np.float32) * 45 - 90, 'latitude', units='degrees', coord_system=lonlat_cs), 0)
cube2.add_aux_coord(iris.coords.DimCoord(points=np.int32(11), long_name='pressure', units='Pa'))
cube2.rename("")
r = iris.analysis.maths.intersection_of_cubes(cube, cube2)
self.assertCML(r, ('cdm', 'test_simple_cube_intersection.cml'))
示例5: test_asset_comparisons
def test_asset_comparisons(self):
s_23 = Asset(23)
s_24 = Asset(24)
self.assertEqual(s_23, s_23)
self.assertEqual(s_23, 23)
self.assertEqual(23, s_23)
self.assertEqual(int32(23), s_23)
self.assertEqual(int64(23), s_23)
self.assertEqual(s_23, int32(23))
self.assertEqual(s_23, int64(23))
# Check all int types (includes long on py2):
for int_type in integer_types:
self.assertEqual(int_type(23), s_23)
self.assertEqual(s_23, int_type(23))
self.assertNotEqual(s_23, s_24)
self.assertNotEqual(s_23, 24)
self.assertNotEqual(s_23, "23")
self.assertNotEqual(s_23, 23.5)
self.assertNotEqual(s_23, [])
self.assertNotEqual(s_23, None)
# Compare to a value that doesn't fit into a platform int:
self.assertNotEqual(s_23, sys.maxsize + 1)
self.assertLess(s_23, s_24)
self.assertLess(s_23, 24)
self.assertGreater(24, s_23)
self.assertGreater(s_24, s_23)
示例6: rotate
def rotate(self):
#self.x += self.r
#self.y += self.r
#d = 2*np.pi*random.random()
ang = self.angle+random.random()/6
self.x = self.xparent + np.int32(fdist(self.r)*np.cos(ang))+randint(-int(self.r),int(self.r))
self.y = self.yparent + np.int32(fdist(self.r)*np.sin(ang))+randint(-int(self.r),int(self.r))
示例7: test_interpolation
def test_interpolation(self):
"""
tests the keypoints interpolation kernel
Requires the following: "self.keypoints1", "self.actual_nb_keypoints", "self.gpu_dog_prev", self.gpu_dog", "self.gpu_dog_next", "self.s", "self.width", "self.height", "self.peakthresh"
"""
# interpolation_setup :
border_dist, peakthresh, EdgeThresh, EdgeThresh0, octsize, nb_keypoints, actual_nb_keypoints, width, height, DOGS, s, keypoints_prev, blur = interpolation_setup()
# actual_nb_keypoints is the number of keypoints returned by "local_maxmin".
# After the interpolation, it will be reduced, but we can still use it as a boundary.
maxwg = kernel_workgroup_size(self.program, "interp_keypoint")
shape = calc_size((keypoints_prev.shape[0],), maxwg)
gpu_dogs = pyopencl.array.to_device(self.queue, DOGS)
gpu_keypoints1 = pyopencl.array.to_device(self.queue, keypoints_prev)
# actual_nb_keypoints = numpy.int32(len((keypoints_prev[:,0])[keypoints_prev[:,1] != -1]))
start_keypoints = numpy.int32(0)
actual_nb_keypoints = numpy.int32(actual_nb_keypoints)
InitSigma = numpy.float32(1.6) # warning: it must be the same in my_keypoints_interpolation
t0 = time.time()
k1 = self.program.interp_keypoint(self.queue, shape, (maxwg,),
gpu_dogs.data, gpu_keypoints1.data, start_keypoints, actual_nb_keypoints,
peakthresh, InitSigma, width, height)
res = gpu_keypoints1.get()
t1 = time.time()
ref = numpy.copy(keypoints_prev) # important here
for i, k in enumerate(ref[:nb_keypoints, :]):
ref[i] = my_interp_keypoint(DOGS, s, k[1], k[2], 5, peakthresh, width, height)
t2 = time.time()
# we have to compare keypoints different from (-1,-1,-1,-1)
res2 = res[res[:, 1] != -1]
ref2 = ref[ref[:, 1] != -1]
if (PRINT_KEYPOINTS):
logger.info("[s=%s]Keypoints before interpolation: %s", s, actual_nb_keypoints)
# logger.info(keypoints_prev[0:10,:]
logger.info("[s=%s]Keypoints after interpolation : %s", s, res2.shape[0])
logger.info(res[0:actual_nb_keypoints]) # [0:10,:]
# logger.info("Ref:")
# logger.info(ref[0:32,:]
# print(maxwg, self.maxwg, self.wg[0], self.wg[1])
if self.maxwg < self.wg[0] * self.wg[1]:
logger.info("Not testing result as the WG is too little %s", self.maxwg)
return
self.assertLess(abs(len(ref2) - len(res2)) / (len(ref2) + len(res2)), 0.33, "the number of keypoint is almost the same")
# print(ref2)
# print(res2)
delta = norm_L1(ref2, res2)
self.assert_(delta < 0.43, "delta=%s" % (delta))
logger.info("delta=%s" % delta)
if self.PROFILE:
logger.info("Global execution time: CPU %.3fms, GPU: %.3fms." % (1000.0 * (t2 - t1), 1000.0 * (t1 - t0)))
logger.info("Keypoints interpolation took %.3fms" % (1e-6 * (k1.profile.end - k1.profile.start)))
示例8: testNumpyTypeCoercion
def testNumpyTypeCoercion():
t = emzed.utils.toTable("a", [np.int32(1)])
t.info()
assert t.getColTypes() == [int], t.getColTypes()
t = emzed.utils.toTable("a", [None, np.int32(1)])
t.info()
assert t.getColTypes() == [int], t.getColTypes()
t.addColumn("b", np.int32(1))
assert t.getColTypes() == [int, int], t.getColTypes()
t.replaceColumn("b", [None, np.int32(1)])
assert t.getColTypes() == [int, int], t.getColTypes()
t.replaceColumn("b", np.int64(1))
assert t.getColTypes() == [int, int], t.getColTypes()
t.replaceColumn("b", [None, np.int64(1)])
assert t.getColTypes() == [int, int], t.getColTypes()
t.replaceColumn("b", np.float32(1.0))
assert t.getColTypes() == [int, float], t.getColTypes()
t.replaceColumn("b", [None, np.float32(1.0)])
assert t.getColTypes() == [int, float], t.getColTypes()
t.replaceColumn("b", np.float64(2.0))
assert t.getColTypes() == [int, float], t.getColTypes()
t.replaceColumn("b", [None, np.float64(2.0)])
assert t.getColTypes() == [int, float], t.getColTypes()
示例9: draw_match
def draw_match(img1, img2, p1, p2, status = None, H = None):
h1, w1 = img1.shape[:2]
h2, w2 = img2.shape[:2]
vis = np.zeros((max(h1, h2), w1+w2), np.uint8)
vis[:h1, :w1] = img1
vis[:h2, w1:w1+w2] = img2
vis = cv2.cvtColor(vis, cv2.COLOR_GRAY2BGR)
if H is not None:
corners = np.float32([[0, 0], [w1, 0], [w1, h1], [0, h1]])
corners = np.int32( cv2.perspectiveTransform(corners.reshape(1, -1, 2), H).reshape(-1, 2) + (w1, 0) )
cv2.polylines(vis, [corners], True, (255, 255, 255))
if status is None:
status = np.ones(len(p1), np.bool_)
green = (0, 255, 0)
red = (0, 0, 255)
for (x1, y1), (x2, y2), inlier in zip(np.int32(p1), np.int32(p2), status):
col = [red, green][inlier]
if inlier:
cv2.line(vis, (x1, y1), (x2+w1, y2), col)
cv2.circle(vis, (x1, y1), 2, col, -1)
cv2.circle(vis, (x2+w1, y2), 2, col, -1)
else:
r = 2
thickness = 3
cv2.line(vis, (x1-r, y1-r), (x1+r, y1+r), col, thickness)
cv2.line(vis, (x1-r, y1+r), (x1+r, y1-r), col, thickness)
cv2.line(vis, (x2+w1-r, y2-r), (x2+w1+r, y2+r), col, thickness)
cv2.line(vis, (x2+w1-r, y2+r), (x2+w1+r, y2-r), col, thickness)
return vis
示例10: test_broadcasting_explicitly_unsupported
def test_broadcasting_explicitly_unsupported(self):
old_batch_shape = [4]
new_batch_shape = [1, 4, 1]
rate_ = self.dtype([1, 10, 2, 20])
rate = array_ops.placeholder_with_default(
rate_,
shape=old_batch_shape if self.is_static_shape else None)
poisson_4 = poisson_lib.Poisson(rate)
new_batch_shape_ph = (
constant_op.constant(np.int32(new_batch_shape)) if self.is_static_shape
else array_ops.placeholder_with_default(
np.int32(new_batch_shape), shape=None))
poisson_141_reshaped = batch_reshape_lib.BatchReshape(
poisson_4, new_batch_shape_ph, validate_args=True)
x_4 = self.dtype([2, 12, 3, 23])
x_114 = self.dtype([2, 12, 3, 23]).reshape(1, 1, 4)
if self.is_static_shape:
with self.assertRaisesRegexp(NotImplementedError,
"too few batch and event dims"):
poisson_141_reshaped.log_prob(x_4)
with self.assertRaisesRegexp(NotImplementedError,
"unexpected batch and event shape"):
poisson_141_reshaped.log_prob(x_114)
return
with self.assertRaisesOpError("too few batch and event dims"):
with self.test_session():
poisson_141_reshaped.log_prob(x_4).eval()
with self.assertRaisesOpError("unexpected batch and event shape"):
with self.test_session():
poisson_141_reshaped.log_prob(x_114).eval()
示例11: testSplit
def testSplit(self):
for dtype in self.numeric_types:
for axis in [0, -3]:
self._testBinary(
lambda x, y: array_ops.split(value=y, num_or_size_splits=3, axis=x),
np.int32(axis),
np.array([[[1], [2]], [[3], [4]], [[5], [6]]],
dtype=dtype),
expected=[
np.array([[[1], [2]]], dtype=dtype),
np.array([[[3], [4]]], dtype=dtype),
np.array([[[5], [6]]], dtype=dtype),
],
equality_test=self.ListsAreClose)
for axis in [1, -2]:
self._testBinary(
lambda x, y: array_ops.split(value=y, num_or_size_splits=2, axis=x),
np.int32(axis),
np.array([[[1], [2]], [[3], [4]], [[5], [6]]],
dtype=dtype),
expected=[
np.array([[[1]], [[3]], [[5]]], dtype=dtype),
np.array([[[2]], [[4]], [[6]]], dtype=dtype),
],
equality_test=self.ListsAreClose)
示例12: test_non_vector_shape
def test_non_vector_shape(self):
dims = 2
new_batch_shape = 2
old_batch_shape = [2]
new_batch_shape_ph = (
constant_op.constant(np.int32(new_batch_shape)) if self.is_static_shape
else array_ops.placeholder_with_default(
np.int32(new_batch_shape), shape=None))
scale = np.ones(old_batch_shape + [dims], self.dtype)
scale_ph = array_ops.placeholder_with_default(
scale, shape=scale.shape if self.is_static_shape else None)
mvn = mvn_lib.MultivariateNormalDiag(scale_diag=scale_ph)
if self.is_static_shape:
with self.assertRaisesRegexp(ValueError, r".*must be a vector.*"):
batch_reshape_lib.BatchReshape(
distribution=mvn,
batch_shape=new_batch_shape_ph,
validate_args=True)
else:
with self.test_session():
with self.assertRaisesOpError(r".*must be a vector.*"):
batch_reshape_lib.BatchReshape(
distribution=mvn,
batch_shape=new_batch_shape_ph,
validate_args=True).sample().eval()
示例13: test_non_positive_shape
def test_non_positive_shape(self):
dims = 2
old_batch_shape = [4]
if self.is_static_shape:
# Unknown first dimension does not trigger size check. Note that
# any dimension < 0 is treated statically as unknown.
new_batch_shape = [-1, 0]
else:
new_batch_shape = [-2, -2] # -2 * -2 = 4, same size as the old shape.
new_batch_shape_ph = (
constant_op.constant(np.int32(new_batch_shape)) if self.is_static_shape
else array_ops.placeholder_with_default(
np.int32(new_batch_shape), shape=None))
scale = np.ones(old_batch_shape + [dims], self.dtype)
scale_ph = array_ops.placeholder_with_default(
scale, shape=scale.shape if self.is_static_shape else None)
mvn = mvn_lib.MultivariateNormalDiag(scale_diag=scale_ph)
if self.is_static_shape:
with self.assertRaisesRegexp(ValueError, r".*must be >=-1.*"):
batch_reshape_lib.BatchReshape(
distribution=mvn,
batch_shape=new_batch_shape_ph,
validate_args=True)
else:
with self.test_session():
with self.assertRaisesOpError(r".*must be >=-1.*"):
batch_reshape_lib.BatchReshape(
distribution=mvn,
batch_shape=new_batch_shape_ph,
validate_args=True).sample().eval()
示例14: test_bad_reshape_size
def test_bad_reshape_size(self):
dims = 2
new_batch_shape = [2, 3]
old_batch_shape = [2] # 2 != 2*3
new_batch_shape_ph = (
constant_op.constant(np.int32(new_batch_shape)) if self.is_static_shape
else array_ops.placeholder_with_default(
np.int32(new_batch_shape), shape=None))
scale = np.ones(old_batch_shape + [dims], self.dtype)
scale_ph = array_ops.placeholder_with_default(
scale, shape=scale.shape if self.is_static_shape else None)
mvn = mvn_lib.MultivariateNormalDiag(scale_diag=scale_ph)
if self.is_static_shape:
with self.assertRaisesRegexp(
ValueError, (r"`batch_shape` size \(6\) must match "
r"`distribution\.batch_shape` size \(2\)")):
batch_reshape_lib.BatchReshape(
distribution=mvn,
batch_shape=new_batch_shape_ph,
validate_args=True)
else:
with self.test_session():
with self.assertRaisesOpError(r"Shape sizes do not match."):
batch_reshape_lib.BatchReshape(
distribution=mvn,
batch_shape=new_batch_shape_ph,
validate_args=True).sample().eval()
示例15: testIgnoredArguments
def testIgnoredArguments(self):
"""Tests that JIT computations can ignore formal parameters."""
with self.session(config=NoRewriteSessionConfig()) as sess:
x = array_ops.placeholder(dtypes.int32)
y = array_ops.placeholder(dtypes.int32)
with jit_scope():
z = math_ops.add(x, x)
w = math_ops.add(y, y)
# Pulls 'w' into the same compilation via control dependencies.
with ops.control_dependencies([w]):
n = control_flow_ops.no_op()
with ops.control_dependencies([n]):
t = math_ops.add(z, z)
run_metadata = config_pb2.RunMetadata()
out = test_utils.RunWithWarmup(
sess,
t, {
x: np.int32(7),
y: np.int32(404)
},
run_metadata=run_metadata,
options=config_pb2.RunOptions(
trace_level=config_pb2.RunOptions.FULL_TRACE))
self.assert_(MetadataHasXlaRunOp(run_metadata))
self.assertAllClose(28, out)