当前位置: 首页>>代码示例>>Python>>正文


Python numpy.hstack函数代码示例

本文整理汇总了Python中numpy.hstack函数的典型用法代码示例。如果您正苦于以下问题:Python hstack函数的具体用法?Python hstack怎么用?Python hstack使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了hstack函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_roc_score

def get_roc_score(edges_pos, edges_neg, score_matrix, apply_sigmoid=False):

    # Edge case
    if len(edges_pos) == 0 or len(edges_neg) == 0:
        return (None, None, None)

    # Store positive edge predictions, actual values
    preds_pos = []
    pos = []
    for edge in edges_pos:
        if apply_sigmoid == True:
            preds_pos.append(sigmoid(score_matrix[edge[0], edge[1]]))
        else:
            preds_pos.append(score_matrix[edge[0], edge[1]])
        pos.append(1) # actual value (1 for positive)
        
    # Store negative edge predictions, actual values
    preds_neg = []
    neg = []
    for edge in edges_neg:
        if apply_sigmoid == True:
            preds_neg.append(sigmoid(score_matrix[edge[0], edge[1]]))
        else:
            preds_neg.append(score_matrix[edge[0], edge[1]])
        neg.append(0) # actual value (0 for negative)
        
    # Calculate scores
    preds_all = np.hstack([preds_pos, preds_neg])
    labels_all = np.hstack([np.ones(len(preds_pos)), np.zeros(len(preds_neg))])
    roc_score = roc_auc_score(labels_all, preds_all)
    # roc_curve_tuple = roc_curve(labels_all, preds_all)
    ap_score = average_precision_score(labels_all, preds_all)
    
    # return roc_score, roc_curve_tuple, ap_score
    return roc_score, ap_score
开发者ID:habedi,项目名称:link-prediction,代码行数:35,代码来源:link_prediction_scores.py

示例2: gen_coastline

def gen_coastline(lon, lat, bathy, depth=0):
    """
    Given lon, lat, and bathymetry, generate vectors of line segments
    of the coastline. This can be exported to matlab (via savemat) to be
    used with the 'editmask' routine for creating grid masks.

    Input
    -----
    lon : array,
        longitudes of bathymetry locations
    lat : array,
        latitudes of bathymetry locations
    bathy : array,
        bathymetry (negative for ocean, positive for land) values
    depth : float,
        depth to use as the definition of the coast

    Returns
    -------
    lon : ndarray,
        vector of coastlines, separated by nan (matlab-style)
    lat : ndarray,
        vector of coastlines, separated by nan (matlab-style)
    """
    CS = plt.contour(lon, lat, bathy, [depth - 0.25, depth + 0.25])
    lon = list()
    lat = list()
    for col in CS.collections:
        for path in col.get_paths():
            lon.append(path.vertices[:, 0])
            lon.append(np.nan)
            lat.append(path.vertices[:, 1])
            lat.append(np.nan)
    return (np.hstack(lon), np.hstack(lat))
开发者ID:dalepartridge,项目名称:seapy,代码行数:34,代码来源:mapping.py

示例3: torgerson

def torgerson(distances, n_components=2):
    """
    Perform classical mds (Torgerson scaling).

    ..note ::
        If the distances are euclidean then this is equivalent to projecting
        the original data points to the first `n` principal components.

    """
    distances = np.asarray(distances)
    assert distances.shape[0] == distances.shape[1]
    N = distances.shape[0]
    # O ^ 2
    D_sq = distances ** 2

    # double center the D_sq
    rsum = np.sum(D_sq, axis=1, keepdims=True)
    csum = np.sum(D_sq, axis=0, keepdims=True)
    total = np.sum(csum)
    D_sq -= rsum / N
    D_sq -= csum / N
    D_sq += total / (N ** 2)
    B = np.multiply(D_sq, -0.5, out=D_sq)

    U, L, _ = np.linalg.svd(B)
    if n_components > N:
        U = np.hstack((U, np.zeros((N, n_components - N))))
        L = np.hstack((L, np.zeros((n_components - N))))
    U = U[:, :n_components]
    L = L[:n_components]
    D = np.diag(np.sqrt(L))
    return np.dot(U, D)
开发者ID:RachitKansal,项目名称:orange3,代码行数:32,代码来源:manifold.py

示例4: display_layer

def display_layer(X, filename="../images/layer.png"):
    """
    Produces an image, composed of the given N images, patches or neural network weights,
    stored in the array X. Saves it with the given filename.
    :param X: numpy array of size (NxD) — N images, patches or neural network weights
    :param filename: a string, the name of the produced file
    :return: None
    """
    if not isinstance(X, np.ndarray):
        raise TypeError("'X' must be a numpy array")
    N, D = X.shape
    d = get_reshaped_image_size(D)

    if N == 1:
        return X.reshape(d, d, 3)
    divizors = [n for n in range(1, N) if N % n == 0]
    im_sizes = divizors[int(len(divizors) / 2)], int(N / divizors[int(len(divizors) / 2)])
    for i in range(im_sizes[0]):
        # img_row = np.hstack((img_row, np.zeros((d, 1, 3))))
        img_row = np.hstack((np.zeros((d, 1, 3)), np.array(X[i * im_sizes[0], :].reshape(d, d, 3))))
        img_row = np.hstack((img_row, np.zeros((d, 1, 3))))
        for j in range(1, im_sizes[1]):
            img_row = np.hstack((img_row, X[i * im_sizes[1] + j, :].reshape(d, d, 3)))
            img_row = np.hstack((img_row, np.zeros((d, 1, 3))))
        if i == 0:
            img = img_row
        else:
            img = np.vstack((img, img_row))
        img = np.vstack((img, np.zeros((1, img.shape[1], 3))))
    img = np.vstack((np.zeros((1, img.shape[1], 3)), img))
    imsave(filename, img)
    return img
开发者ID:izmailovpavel,项目名称:Practicum,代码行数:32,代码来源:display_layer.py

示例5: __mul__

    def __mul__(self, df):
        """
        extract and stack  poles and zeros

        TODO : handling simplification
        """

        b1 = self.b
        a1 = self.a
        b2 = df.b
        a2 = df.a

        pb1 = np.poly1d(b1)
        pa1 = np.poly1d(a1)
        pb2 = np.poly1d(b2)
        pa2 = np.poly1d(a2)

        rpb1 = pb1.r
        rpb2 = pb2.r
        rpa1 = pa1.r
        rpa2 = pa2.r

        F = DF()
        F.p = np.hstack((rpa1, rpa2))
        F.z = np.hstack((rpb1, rpb2))

        F.simplify()

        return F
开发者ID:tattoxcm,项目名称:pylayers,代码行数:29,代码来源:DF.py

示例6: save

    def save(self,filename):
        num_objs = len(self.objects)
        data_size = 0
        
        desc = []
        data = []
        for obj in self.objects:
            if isinstance(obj,self.scalars):
                desc.append(0)
                data.append(obj)
                data_size += 1
            else:
                assert(isinstance(obj,np.ndarray))
                desc.append(len(obj.shape))
                desc.append(obj.shape)
                
                data.append(obj.flatten(order='F'))
                data_size += np.prod(obj.shape)

        desc = np.hstack(desc)
        header_size = 3 + desc.size
        output = np.hstack([num_objs,header_size,data_size]
                           + [desc]
                           + data).astype(np.double)
        assert((header_size + data_size,) == output.shape)
        output.tofile(filename)
开发者ID:order,项目名称:lcp-research,代码行数:26,代码来源:marshal.py

示例7: getScalars

  def getScalars(self, inputData):
    """
    Returns a numpy array containing the sub-field scalar value(s) for
    each sub-field of the inputData. To get the associated field names for each of
    the scalar values, call getScalarNames().

    For a simple scalar encoder, the scalar value is simply the input unmodified.
    For category encoders, it is the scalar representing the category string
    that is passed in. For the datetime encoder, the scalar value is the
    the number of seconds since epoch.

    The intent of the scalar representation of a sub-field is to provide a
    baseline for measuring error differences. You can compare the scalar value
    of the inputData with the scalar value returned from topDownCompute() on a
    top-down representation to evaluate prediction accuracy, for example.

    @param inputData The data from the source. This is typically a object with
                 members
    @returns array of scalar values
    """

    retVals = numpy.array([])

    if self.encoders is not None:
      for (name, encoder, offset) in self.encoders:
        values = encoder.getScalars(self._getInputValue(inputData, name))
        retVals = numpy.hstack((retVals, values))
    else:
      retVals = numpy.hstack((retVals, inputData))

    return retVals
开发者ID:TKCen,项目名称:nupic,代码行数:31,代码来源:base.py

示例8: load_sdss_data_both_catalogs

def load_sdss_data_both_catalogs(hemi):
    lowz = load_sdss_data('lowz', hemi)
    cmass = load_sdss_data('cmass', hemi)
    ra = np.hstack([lowz['ra'],cmass['ra']])
    dec = np.hstack([lowz['dec'],cmass['dec']])
    z = np.hstack([lowz['z'],cmass['z']])        
    return {'ra':ra, 'dec':dec, 'z':z}
开发者ID:amanzotti,项目名称:vksz,代码行数:7,代码来源:vksz.py

示例9: offsetPlane

 def offsetPlane(plane, x, y):
     """
     Takes a numpy 2D array and returns the same plane offset by x and y,
     adding rows and columns of 0 values
     """
     height, width = plane.shape
     dataType = plane.dtype
     # shift x by cropping, creating a new array of columns and stacking
     # horizontally
     if abs(x) > 0:
         newCols = zeros((height, abs(x)), dataType)
         x1 = max(0, 0 - x)
         x2 = min(width, width - x)
         crop = plane[0:height, x1:x2]
         if x > 0:
             plane = hstack((newCols, crop))
         else:
             plane = hstack((crop, newCols))
     # shift y by cropping, creating a new array of rows and stacking
     # vertically
     if abs(y) > 0:
         newRows = zeros((abs(y), width), dataType)
         y1 = max(0, 0 - y)
         y2 = min(height, height - y)
         crop = plane[y1:y2, 0:width]
         if y > 0:
             plane = vstack((newRows, crop))
         else:
             plane = vstack((crop, newRows))
     return plane
开发者ID:sbesson,项目名称:scripts,代码行数:30,代码来源:Channel_Offsets.py

示例10: sample_trajectory

def sample_trajectory(M, n_states):
    # Samples trajectories from random nodes
    #  in our domain (M)
    G, W = M.get_graph_inv()
    N = G.shape[0]
    if N >= n_states:
        rand_ind = np.random.permutation(N)
    else:
        rand_ind = np.tile(np.random.permutation(N), (1, 10))
    init_states = rand_ind[0:n_states].flatten()
    goal_s = M.map_ind_to_state(M.targetx, M.targety)
    states = []
    states_xy = []
    states_one_hot = []
    # Get optimal path from graph
    g_dense = W
    g_masked = np.ma.masked_values(g_dense, 0)
    g_sparse = csr_matrix(g_dense)
    d, pred = dijkstra(g_sparse, indices=goal_s, return_predecessors=True)
    for i in range(n_states):
        path = trace_path(pred, goal_s, init_states[i])
        path = np.flip(path, 0)
        states.append(path)
    for state in states:
        L = len(state)
        r, c = M.get_coords(state)
        row_m = np.zeros((L, M.n_row))
        col_m = np.zeros((L, M.n_col))
        for i in range(L):
            row_m[i, r[i]] = 1
            col_m[i, c[i]] = 1
        states_one_hot.append(np.hstack((row_m, col_m)))
        states_xy.append(np.hstack((r, c)))
    return states_xy, states_one_hot
开发者ID:Kaushalya,项目名称:pytorch-value-iteration-networks,代码行数:34,代码来源:gridworld.py

示例11: phase_step_spike_fq

    def phase_step_spike_fq(self, spikes_time, full_step, nb_block, fs):
        stance_spike_fq=[]
        swing_spike_fq=[]
        for step in full_step:
            stance_block_duration = (step[1]-step[0])/nb_block
            swing_block_duration = (step[2]-step[1])/nb_block
            step_stance_count = []
            step_swing_count = []
            for i in range(nb_block):
                step_stance_count.append(0)
                step_swing_count.append(0)

            for spike_time in spikes_time:
                #if stance phase
                if step[0] < spike_time/fs < step[1]:
                    list_block = np.arange(step[0], step[1], stance_block_duration)
                    list_block = np.hstack((list_block, step[1]))
                    for i in range(nb_block):
                        if list_block[i] < spike_time/fs < list_block[i+1]:
                            step_stance_count[i] += 1
                #if swing phase
                elif step[1] < spike_time/fs < step[2]:
                    list_block = np.arange(step[1], step[2], swing_block_duration)
                    list_block = np.hstack((list_block, step[2]))
                    for i in range(nb_block):
                        if list_block[i] < spike_time/fs < list_block[i+1]:
                            step_swing_count[i] += 1
                # elif spike_time/fs > step[2]:
                #     break
            stance_spike_fq.append(np.array(step_stance_count) / stance_block_duration)
            swing_spike_fq.append(np.array(step_swing_count) / swing_block_duration)

        return stance_spike_fq, swing_spike_fq
开发者ID:scauglog,项目名称:brain_record_toolbox,代码行数:33,代码来源:signal_processing.py

示例12: test_fuzz

 def test_fuzz(self):
     # try a bunch of crazy inputs
     rfuncs = (
             np.random.uniform,
             np.random.normal,
             np.random.standard_cauchy,
             np.random.exponential)
     ntests = 100
     for i in range(ntests):
         rfunc = random.choice(rfuncs)
         target_norm_1 = random.expovariate(1.0)
         n = random.randrange(2, 16)
         A_original = rfunc(size=(n,n))
         E_original = rfunc(size=(n,n))
         A_original_norm_1 = scipy.linalg.norm(A_original, 1)
         scale = target_norm_1 / A_original_norm_1
         A = scale * A_original
         E = scale * E_original
         M = np.vstack([
             np.hstack([A, E]),
             np.hstack([np.zeros_like(A), A])])
         expected_expm = scipy.linalg.expm(A)
         expected_frechet = scipy.linalg.expm(M)[:n, n:]
         observed_expm, observed_frechet = expm_frechet(A, E)
         assert_allclose(expected_expm, observed_expm)
         assert_allclose(expected_frechet, observed_frechet)
开发者ID:ymarfoq,项目名称:outilACVDesagregation,代码行数:26,代码来源:test_matfuncs.py

示例13: run_classify

def run_classify(X_groups_train, y_train, X_groups_validate, y_validate):
    """
    Although this function is given groups, it actually doesn't utilize the groups at all in the criterion
    """

    method_label = "gridsearch_lasso"

    X_validate = np.hstack(X_groups_validate)

    max_power = np.log(50)
    min_power = np.log(1e-4)
    lambda_guesses = np.power(np.e, np.arange(min_power, max_power, (max_power - min_power - 1e-5) / (NUM_LAMBDAS - 1)))
    print method_label, "lambda_guesses", lambda_guesses

    X_train = np.hstack(X_groups_train)
    problem_wrapper = LassoClassifyProblemWrapper(X_train, y_train, [])

    best_cost = 1e5
    best_betas = []
    best_regularization = lambda_guesses[0]

    for l1 in reversed(lambda_guesses):
        betas = problem_wrapper.solve([l1])
        current_cost, _ = testerror_logistic_grouped(X_validate, y_validate, betas)
        if best_cost > current_cost:
            best_cost = current_cost
            best_betas = betas
            best_regularization = l1
            print method_label, "best_cost so far", best_cost, "best_regularization", best_regularization
            sys.stdout.flush()

    print method_label, "best_validation_error", best_cost
    print method_label, "best lambdas:", best_regularization

    return best_betas, best_cost
开发者ID:jjfeng,项目名称:descent_optimization,代码行数:35,代码来源:gridsearch_lasso.py

示例14: _plot_traj

    def _plot_traj(self, z, axes, units):
        """Plots spacecraft trajectory.

        Args:
            - z (``tuple``, ``list``, ``numpy.ndarray``): Decision chromosome.
            - axes (``matplotlib.axes._subplots.Axes3DSubplot``): 3D axes to use for the plot
            - units (``float``, ``int``): Length unit by which to normalise data.

        Examples:
            >>> prob.extract(pykep.trajopt.indirect_or2or).plot_traj(pop.champion_x)
        """

        # times
        t0 = pk.epoch(0)
        tf = pk.epoch(z[0])

        # Mean Anomalies
        M0 = z[1] - self.elem0[1] * np.sin(z[1])
        Mf = z[2] - self.elemf[1] * np.sin(z[2])

        elem0 = np.hstack([self.elem0[:5], [M0]])
        elemf = np.hstack([self.elemf[:5], [Mf]])

        # Keplerian points
        kep0 = pk.planet.keplerian(t0, elem0)
        kepf = pk.planet.keplerian(tf, elemf)

        # planets
        pk.orbit_plots.plot_planet(
            kep0, t0=t0, units=units, ax=axes, color=(0.8, 0.8, 0.8))
        pk.orbit_plots.plot_planet(
            kepf, t0=tf, units=units, ax=axes, color=(0.8, 0.8, 0.8))
开发者ID:darioizzo,项目名称:pykep,代码行数:32,代码来源:_indirect.py

示例15: _stimcorr_core

    def _stimcorr_core(self, motionfile, intensityfile, designmatrix, cwd=None):
        """
        Core routine for determining stimulus correlation

        """
        if not cwd:
            cwd = os.getcwd()
        # read in motion parameters
        mc_in = np.loadtxt(motionfile)
        g_in = np.loadtxt(intensityfile)
        g_in.shape = g_in.shape[0], 1
        dcol = designmatrix.shape[1]
        mccol = mc_in.shape[1]
        concat_matrix = np.hstack((np.hstack((designmatrix, mc_in)), g_in))
        cm = np.corrcoef(concat_matrix, rowvar=0)
        corrfile = self._get_output_filenames(motionfile, cwd)
        # write output to outputfile
        file = open(corrfile, 'w')
        file.write("Stats for:\n")
        file.write("Stimulus correlated motion:\n%s\n" % motionfile)
        for i in range(dcol):
            file.write("SCM.%d:" % i)
            for v in cm[i, dcol + np.arange(mccol)]:
                file.write(" %.2f" % v)
            file.write('\n')
        file.write("Stimulus correlated intensity:\n%s\n" % intensityfile)
        for i in range(dcol):
            file.write("SCI.%d: %.2f\n" % (i, cm[i, -1]))
        file.close()
开发者ID:DimitriPapadopoulos,项目名称:nipype,代码行数:29,代码来源:rapidart.py


注:本文中的numpy.hstack函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。