当前位置: 首页>>代码示例>>Python>>正文


Python numpy.hsplit函数代码示例

本文整理汇总了Python中numpy.hsplit函数的典型用法代码示例。如果您正苦于以下问题:Python hsplit函数的具体用法?Python hsplit怎么用?Python hsplit使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了hsplit函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: otsuthresh

def otsuthresh(hist):
    #http://docs.opencv.org/master/d7/d4d/tutorial_py_thresholding.html
    # find normalized_histogram, and its cumulative distribution function
    hist_norm = old_div(hist.astype("float").ravel(),hist.max())
    Q = hist_norm.cumsum()

    bins = np.arange(len(hist_norm))

    fn_min = np.inf
    thresh = -1

    for i in range(1,len(hist_norm)):
        p1,p2 = np.hsplit(hist_norm,[i]) # probabilities
        q1,q2 = Q[i],Q[len(hist_norm)-1]-Q[i] # cum sum of classes
        b1,b2 = np.hsplit(bins,[i]) # weights

        # finding means and variances
        m1,m2 = old_div(np.sum(p1*b1),q1), old_div(np.sum(p2*b2),q2)
        v1,v2 = old_div(np.sum(((b1-m1)**2)*p1),q1),old_div(np.sum(((b2-m2)**2)*p2),q2)

        # calculates the minimization function
        fn = v1*q1 + v2*q2
        if fn < fn_min:
            fn_min = fn
            thresh = i

    return thresh
开发者ID:davtoh,项目名称:RRtools,代码行数:27,代码来源:hypothesis2.py

示例2: zero_directions

def zero_directions(zero_vec, tf, e=0.0001):
    """
    Parameters: zero_vec => a vector containing all the transmission zeros of a system
                tf       => the transfer function G(s) of the system
                e        => this avoids possible divide by zero errors in G(z)
    Returns:    zero_dir => zero directions in the form:
                            (zero, input direction, output direction)
    Notes: this method is going to give dubious answers if the function G has pole zero cancellation...
    """
    zero_dir = []
    for z in zero_vec:
        num, den = cn.tfdata(tf)
        rows, cols = np.shape(num)

        G = np.empty(shape=(rows, cols))

        for x in range(rows):
            for y in range(cols):
                top = np.polyval(num[x][y], z)
                bot = np.polyval(den[x][y], z)
                if bot == 0.0:
                    bot = e

                entry = float(top) / bot
                G[x][y] = entry

        U, S, V = np.linalg.svd(G)
        V = np.transpose(np.conjugate(V))
        u_rows, u_cols = np.shape(U)
        v_rows, v_cols = np.shape(V)
        yz = np.hsplit(U, u_cols)[-1]
        uz = np.hsplit(V, v_cols)[-1]
        zero_dir.append((z, uz, yz))
    return zero_dir
开发者ID:Lindeski,项目名称:Skogestad-Python,代码行数:34,代码来源:MIMO_Tools.py

示例3: _projTGraph

    def _projTGraph(self,g):

        sentry = TH1AddDirSentry()

        y      = numpy.ndarray( (g.GetN(),),dtype=numpy.double, buffer=g.GetY() )
        ysplit = numpy.hsplit(y,self._nfold)
        p_y    = numpy.sum(ysplit,axis=self._pax)

        eyh = numpy.ndarray( (g.GetN(),),dtype=numpy.double, buffer=g.GetEYhigh() )
        eyh2_split = numpy.hsplit( (eyh**2) ,self._nfold)
        p_eyh      = numpy.sqrt( numpy.sum(eyh2_split,axis=self._pax) )

        eyl = numpy.ndarray( (g.GetN(),),dtype=numpy.double, buffer=g.GetEYlow() )
        eyl2_split = numpy.hsplit( (eyl**2) ,self._nfold)
        p_eyl      = numpy.sqrt( numpy.sum(eyl2_split,axis=self._pax) )

        x = array.array('d',[0]*self._nbins)
        exh = array.array('d',[0]*self._nbins)
        exl = array.array('d',[0]*self._nbins)
        for i in xrange(self._nbins):
            x[i]            = (self._axdef[i+1]+self._axdef[i])/2.
            exh[i] = exl[i] = (self._axdef[i+1]-self._axdef[i])/2.

        p_g = ROOT.TGraphAsymmErrors(self._nbins, x, p_y, exl, exh, p_eyl, p_eyh)
        p_g.SetNameTitle('%s_proj_%s' % (g.GetName(),self._proj),'%s proj %s' % (g.GetTitle(),self._proj))

        ROOT.TAttLine.Copy(g,p_g)
        ROOT.TAttFill.Copy(g,p_g)
        ROOT.TAttMarker.Copy(g,p_g)
        return p_g
开发者ID:alessandrothea,项目名称:ginger,代码行数:30,代码来源:testcoroner.py

示例4: compute_candidate_connections

    def compute_candidate_connections(self, paf, cand_a, cand_b, img_len, params):
        candidate_connections = []
        for joint_a in cand_a:
            for joint_b in cand_b:  # jointは(x, y)座標
                vector = joint_b[:2] - joint_a[:2]
                norm = np.linalg.norm(vector)
                if norm == 0:
                    continue

                ys = np.linspace(joint_a[1], joint_b[1], num=params['n_integ_points'])
                xs = np.linspace(joint_a[0], joint_b[0], num=params['n_integ_points'])
                integ_points = np.stack([ys, xs]).T.round().astype('i')  # joint_aとjoint_bの2点間を結ぶ線分上の座標点 [[x1, y1], [x2, y2]...]
                paf_in_edge = np.hstack([paf[0][np.hsplit(integ_points, 2)], paf[1][np.hsplit(integ_points, 2)]])
                unit_vector = vector / norm
                inner_products = np.dot(paf_in_edge, unit_vector)

                integ_value = inner_products.sum() / len(inner_products)
                # vectorの長さが基準値以上の時にペナルティを与える
                integ_value_with_dist_prior = integ_value + min(params['limb_length_ratio'] * img_len / norm - params['length_penalty_value'], 0)

                n_valid_points = sum(inner_products > params['inner_product_thresh'])
                if n_valid_points > params['n_integ_points_thresh'] and integ_value_with_dist_prior > 0:
                    candidate_connections.append([int(joint_a[3]), int(joint_b[3]), integ_value_with_dist_prior])
        candidate_connections = sorted(candidate_connections, key=lambda x: x[2], reverse=True)
        return candidate_connections
开发者ID:kaustubhharapanahalli,项目名称:Chainer_Realtime_Multi-Person_Pose_Estimation,代码行数:25,代码来源:pose_detector.py

示例5: ostu_algorithm

def ostu_algorithm(img, blursize=3):
    blur = cv2.GaussianBlur(img, (blursize, blursize), 0)
    hist = cv2.calcHist([blur], [0], None, [256], [0, 256])
    hist_norm = hist.ravel() / hist.max()
    Q = hist_norm.cumsum()
    bins = np.arange(256)
    fn_min = np.inf
    thresh = -1
    for i in xrange(1, 256):
        p1, p2 = np.hsplit(hist_norm, [i])  # probabilities
        q1, q2 = Q[i], Q[255] - Q[i]  # cum sum of classes
        b1, b2 = np.hsplit(bins, [i])  # weights

        if q1 == 0:
            continue
        if q2 == 0:
            continue
        m1, m2 = np.sum(p1 * b1) / q1, np.sum(p2 * b2) / q2
        v1, v2 = np.sum(((b1 - m1) ** 2) * p1) / q1, np.sum(((b2 - m2) ** 2) * p2) / q2
        fn = v1 * q1 + v2 * q2

        if fn < fn_min:
            fn_min = fn
            thresh = i
    _, otsu = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

    return otsu
开发者ID:sunary,项目名称:image-process,代码行数:27,代码来源:histogram_equalization.py

示例6: plotDensityPCA

def plotDensityPCA(args, pcaMatrix):
    outName = args.outputFileName
    outName = outName + '_PCAdensity_' + str(NBINS)
    pcaXCoord = numpy.hsplit(pcaMatrix, [1])[0]
    pcaXCoord = pcaXCoord.reshape(1, len(pcaXCoord))[0]
    pcaXCoord = pcaXCoord.real
    pcaYCoord = numpy.hsplit(pcaMatrix, [1])[1]
    pcaYCoord = pcaYCoord.reshape(1, len(pcaYCoord))[0]
    pcaYCoord = pcaYCoord.real
    #fig2.set_title('Density plot of main PCA components')
    H, edgeX, edgeY = numpy.histogram2d(pcaXCoord, pcaYCoord, bins = NBINS)
    H = numpy.rot90(H)
    H = numpy.flipud(H)
    # mask zeroes
    maskedH = numpy.ma.masked_where(H==0, H)
    #Plot the histogram
    fig2 = matplotlib.pyplot.figure()
    plt.pcolormesh(edgeX, edgeY, maskedH)
    plt.xlabel('Pricinpal Component 1')
    plt.ylabel('Principal Component 2') 
    cbar = plt.colorbar()
    cbar.ax.set_ylabel('Counts')
    fig2.savefig(outName, format='png')
    #show()
    return fig2
开发者ID:jueshengong,项目名称:psytrans,代码行数:25,代码来源:plotPCA.py

示例7: fit

    def fit(self, features, classes):
        # TODO implement the above algorithm to build a random forest of decision trees
        self.trees = [] #list of root nodes
        esr = self.example_subsample_rate
        asr = self.attr_subsample_rate
        means = np.mean(features, axis=0)

        for i in xrange(self.num_trees):
            # a) Subsample the examples provided (with replacement) in accordance with a example subsampling rate.
            features_np = np.asarray(features)
            classes_np = np.asarray([classes]).transpose()
            merged = np.concatenate((features_np, classes_np), axis=1)
            merged_rand = np.random.permutation(merged)
            merged_rand_esr = merged_rand[0:int(esr*len(features_np))]
            split_rand = np.hsplit(merged_rand_esr, np.array([4, 6]))
            features_split = split_rand[0]
            classes_split = split_rand[1]

            # b) From the sample in a), choose attributes at random to learn on, in accordance with an attribute subsampling rate.
            num_attrs = int(asr * features.shape[1])
            rand_attrs = np.random.randint(features.shape[1], num_attrs)
            for i in xrange(len(rand_attrs)):
                attr_features_split = np.hsplit(features_split, np.array([rand_attrs[i], 6]))[0]    #need to rewrite

            # c) Fit a decision tree to the subsample of data we've chosen (to a certain depth)
            

            leaf0 = DecisionNode(None, None, None, class_label=0)
            leaf1 = DecisionNode(None, None, None, class_label=1)
            nodeA1 = DecisionNode(leaf1, leaf0, lambda x: 1 if x[0]<means[0] else 0)
            root_node = nodeA1

            self.trees.append(root_node)
开发者ID:cheehieu,项目名称:artificial-intelligence,代码行数:33,代码来源:decision_tree.py

示例8: calculate

def calculate(db):
    rep = "1"
    i = 0
    while (rep == "y" or rep == "Y" or rep == "1"):
        search = str(raw_input("Substance: "))
        k = i
    
        with open(db,'r') as dbfile:
            for line in dbfile:
                if (search == line.split()[0]):
                    mass = float(input("Mass (g): "))
                    prop = mass/100*numpy.array([line.split()[1:]], dtype=float)
                    i = i + 1
                    if (rep == "1"):
                        propall = prop
                    else:
                        propall = numpy.vstack([propall, prop])
        
        if (i == k):
            print ("Substance "+search+" not found!")
        rep = str(raw_input("Repeat [y/n]: "))
    
    if (i != 0):
        prot = sum(numpy.hsplit(propall,  (0, 1))[1])
        lip = sum(numpy.hsplit(propall,  (1, 2))[1])
        carb = sum(numpy.hsplit(propall,  (2, 3))[1])
        ccal = sum(numpy.hsplit(propall,  (3, 4))[1])
        glyc = sum(numpy.hsplit(propall,  (4, 4))[2])
    
    print ("\nProteins: "+str(round(prot, 2))+"\nLipids: "+str(round(lip, 2))+"\nCarbohydrates: "+str(round(carb, 2))+"\nccal: "+str(round(ccal, 2))+"\nGlycemic index: "+str(round(glyc, 2)))
开发者ID:arcan1s,项目名称:food_gui,代码行数:30,代码来源:food.py

示例9: run

def run(name, source, quick=False):
    print time.asctime(time.localtime()), "Filling BDT Branches"  

    branch_names = joblib.load("pickle/variables.pkl")
    
    if quick == True:
        signal = joblib.load('pickle/all_signalq.pkl')   
        clf = joblib.load("pickle/" + name + "quick.pkl")     
    else:
        signal = joblib.load('pickle/all_signal.pkl')
        clf = joblib.load("pickle/" + name + ".pkl")

    # predict and write probability of each MC event being signal
    bdt_MC_predicted = clf.predict_proba(signal)
    bdt_MC_predicted.dtype = [('GradBoost_prob', np.float64)]
    array2root((np.hsplit(bdt_MC_predicted,2)[1]), "/net/storage03/data/users/dlafferty/NTuples/SignalMC/2012/combined/Bs2phiphi_MC_2012_combined_corrected_TupleA_BDT.root", "DecayTree")

    # predict and write probability of every data event being signal
    all_data = root2array("/net/storage03/data/users/dlafferty/NTuples/data/2012/combined/Bs2phiphi_data_2012_corrected_TupleA_BDT.root", "DecayTree", branch_names)
    all_data = rec2array(all_data)

    bdt_data_predicted = clf.predict_proba(all_data)
    bdt_data_predicted.dtype = [('GradBoost_prob', np.float64)]
    array2root((np.hsplit(bdt_data_predicted,2)[1]), "/net/storage03/data/users/dlafferty/NTuples/data/2012/combined/Bs2phiphi_data_2012_corrected_TupleA_BDT.root", "DecayTree")
        
    print time.asctime(time.localtime()), "Branches Filled!"
开发者ID:david0811,项目名称:RISE,代码行数:26,代码来源:write.py

示例10: main

def main():
   global args
   args = parse()
   # Run through desc stats for file 1
   prefix = args.files[0].split(".")[0] 
   fn = prefix+".txt"
   outfile = prefix+"_results.txt"
   data = np.genfromtxt(fn)
#   ligindex = [4,5,6,7,8,27,28,29,30,31,32,33,34] # Can be used to analyse a subset of ligands
#   data = data[ligindex]
#   print data
   data = np.hsplit(data,[1]) # Split expt values apart
   expt = data[0]
   comput = data[1]
   anova = np.copy(comput) # Beginning of array for anova
   origdata = np.hstack((expt,np.reshape(np.mean(comput,axis=1),(47,1)))) # Reshape then stack, now each ligand has an entry of length 2
   write_data(outfile,origdata)
   # Now do stats and t test for others
   for argfile in args.files[1:]:
      prefix = argfile.split(".")[0] 
      fn = prefix+".txt"
      outfile = prefix+"_results_vs_file1.txt"
      data = np.genfromtxt(fn)
#      data = data[ligindex]
      data = np.hsplit(data,[1]) # Split expt values apart
      expt = data[0]
      comput = data[1]
      anova = np.hstack((anova,comput)) # Add data to Anova array
      currdata = np.hstack((expt,np.reshape(np.mean(comput,axis=1),(47,1)))) # Reshape then stack, now each ligand has an entry of length 2
      write_data(outfile,currdata)
      t_test_diffs(origdata,currdata,outfile)
   # Now do Anova      
   calc_anova(anova,"Anovas.txt")
开发者ID:rtb1c13,项目名称:scripts,代码行数:33,代码来源:analyse_hfe.py

示例11: logistic_test

 def logistic_test(self, X, Y, train_results, predict_with_intercept=True,
                   predict_with_fixed_effects=True, use_prior_beta_split=True):
     
     training_betas = train_results.params
     print training_betas
     
     # please add fixed effects BEFORE intercept, for now! 
     if self.fixed_effects_set:
         if not predict_with_fixed_effects:
             if use_prior_beta_split:
                 print np.shape(X), self.prior_beta_split, len(training_betas)
                 X = np.hsplit(X, [len(self.subject_indices.keys())])[1]
                 training_betas = training_betas[self.prior_beta_split:]
                 print np.shape(X), len(training_betas)
             else:
                 X = np.hsplit(X, [len(self.subject_indices.keys())])[1]
                 training_betas = training_betas[len(self.subject_indices.keys()):]
     
     
     if self.intercept_set:
         if not predict_with_intercept:
             X = np.hsplit(X, 1)[1]
             training_betas = training_betas[1:]
             
     
     test_eta = np.dot(X, training_betas)
     test_p = np.exp(test_eta) / (1. + np.exp(test_eta))
     test_predict = (test_p > 0.5)
     return (Y == test_predict).sum()*1. / Y.shape[0]
开发者ID:kieferkat,项目名称:kk-tools,代码行数:29,代码来源:regression.py

示例12: ChangeSize

    def ChangeSize(self,n_nodes):
        self.masses.resize((1,n_nodes),refcheck=False)
        #self.masses=np.resize(self.masses,(1,n_nodes))
        #self.masses[0][-1] #bug in resize??
        self.initDisp.resize((1,n_nodes),refcheck=False)
        self.initVel.resize((1,n_nodes),refcheck=False)
        #self.initDisp=np.resize(self.initDisp,(1,n_nodes))
        #self.initVel=np.resize(self.initVel,(1,n_nodes))
        

        if n_nodes>self.n_nodes:
            #Take care of 2D array manipulation
            delta=n_nodes-self.n_nodes
            hor=np.zeros((self.n_nodes,delta))
            ver=np.zeros((delta,n_nodes))
            self.springs=np.vstack((np.hstack((self.springs,hor)),ver))
            self.dampers=np.vstack((np.hstack((self.dampers,hor)),ver))
            # Take care of displacement and forces list
            print self.n_nodes,n_nodes
            for i in range(0,n_nodes-self.n_nodes):
                #print i
                self.displacements.append(-1)
                self.forces.append(-1)
            #addArray=[0 for x in range(self.syst.n_nodes,n_nodes)]
        elif n_nodes<self.n_nodes:
            self.springs=np.hsplit(np.vsplit(self.springs,(n_nodes,n_nodes))[0],(n_nodes,n_nodes))[0]
            self.dampers=np.hsplit(np.vsplit(self.dampers,(n_nodes,n_nodes))[0],(n_nodes,n_nodes))[0]
            self.displacements=self.displacements[0:n_nodes]
            self.forces=self.forces[0:n_nodes]
        self.n_nodes=n_nodes
开发者ID:snexus,项目名称:ODDS,代码行数:30,代码来源:odds.py

示例13: scale_up

def scale_up(a, x=2, y=2, num_z=None):
    """Scale the input array repeating the array values up by the
    x and y factors.

    Requires:
    --------
    a : array
        An ndarray, 1D arrays will be upcast to 2D
    x, y : numbers
        Factors to scale the array in x (col) and y (row).  Scale factors
        must be greater than 2
    num_z : number
        For 3D, produces the 3rd dimension, ie. if num_z = 3 with the
        defaults, you will get an array with shape=(3, 6, 6).  If
        num_z != None or 0, then the options are 'repeat', 'random'.
        With 'repeat' the extras are kept the same and you can add random
        values to particular slices of the 3rd dimension, or multiply them.

    Returns:
    -------
    >>> a = np.array([[0, 1, 2], [3, 4, 5]]
    >>> b = scale(a, x=2, y=2)
    array([[0, 0, 1, 1, 2, 2],
           [0, 0, 1, 1, 2, 2],
           [3, 3, 4, 4, 5, 5],
           [3, 3, 4, 4, 5, 5]])

    Notes:
    -----
    >>> a = np.arange(2*2).reshape(2,2)
    array([[0, 1],
           [2, 3]])
    >>> f_(scale(a, x=2, y=2, num_z=2))
    Array... shape (3, 4, 4), ndim 3, not masked
    0, 0, 1, 1    0, 0, 1, 1    0, 0, 1, 1
    0, 0, 1, 1    0, 0, 1, 1    0, 0, 1, 1
    2, 2, 3, 3    2, 2, 3, 3    2, 2, 3, 3
    2, 2, 3, 3    2, 2, 3, 3    2, 2, 3, 3
    sub (0)       sub (1)       sub (2)

    """
    if (x < 1) or (y < 1):
        print("x or y scale < 1... \n{}".format(scale_up.__doc__))
        return None
    a = np.atleast_2d(a)
    z0 = np.tile(a.repeat(x), y)  # repeat for x, then tile
    z1 = np.hsplit(z0, y)         # split into y parts horizontally
    z2 = np.vstack(z1)            # stack them vertically
    if a.shape[0] > 1:            # if there are more, repeat
        z3 = np.hsplit(z2, a.shape[0])
        z3 = np.vstack(z3)
    else:
        z3 = np.vstack(z2)
    if num_z not in (0, None):
        d = [z3]
        for i in range(num_z):
            d.append(z3)
        z3 = np.dstack(d)
        z3 = np.rollaxis(z3, 2, 0)
    return z3
开发者ID:Dan-Patterson,项目名称:GIS,代码行数:60,代码来源:grid.py

示例14: phiSub

def phiSub(Q, k1, k2):
    """
    Calculate initial vector for any subset.

    Parameters
    ----------
    mec : dcpyps.Mechanism
        The mechanism to be analysed.

    Returns
    -------
    phi : ndarray, shape (kA)
    """

    u = np.ones((k2 - k1 + 1, 1))
    p = pinf(Q)
    p1, p2, p3 = np.hsplit(p,(k1, k2+1))
    p1c = np.hstack((p1, p3))

    #Q = Q.copy()
    Q1, Q2, Q3 = np.hsplit(Q,(k1, k2+1))
    Q21, Q22, Q23 = np.hsplit(Q2.transpose(),(k1, k2+1))
    Q22c = Q22.copy()
    Q12 = np.vstack((Q21.transpose(), Q23.transpose()))

    nom = np.dot(p1c, Q12)
    denom = np.dot(nom,u)
    phi = nom / denom
    return phi, Q22c
开发者ID:jenshnielsen,项目名称:DCPYPS,代码行数:29,代码来源:qmatlib.py

示例15: __init__

	def __init__(self,data=list(),Lambda=.1, gamma =.5, theta=None ):
	# SVM Class
	#
	# @param data		[Nxd] array of observations where N is the number of observations and d is the dimensionality of the abstract space
	# @param Lambda		Regularizer to control Smoothness / Accuracy.  Preliminary experimental results show the range 0-1 controls this parameter.
	# @param gamma		List of gamma values which define the kernel smoothness
	
		try:
			self.N,self.d = data.shape
		except ValueError:
			self.N,self.d = (len(data),1)
			self.X = data.reshape([ self.N, self.d ])
		else:
			self.X = data

		self.Lambda = Lambda
		self.gamma = gamma
		
		self.t = np.hsplit(self.X,[1])[0]
		self.offset = np.tile( np.hsplit(self.X,[1])[0], len(theta) )
		self.theta = np.repeat( np.array(theta), self.N )
		
		self.D = self._K( self.X.reshape([self.N,1,self.d]) - self.X.T.reshape([1,self.N,self.d]) )
		self.S = np.array( [ [ subset(self.X,self.D, t, theta ) for t in self.t ] for theta in self.theta ] ).flatten()
		
		self.SV = None			# X value array of SV
		self.NSV = None			# cardinality of SV
		self.alpha = None			# the full weight array for all observations
		self.beta = None			# weight array for SV
		self.K = None				# precomputed kernel matrix
		
		self._compute()
开发者ID:kerinin,项目名称:iEngine,代码行数:32,代码来源:SVM_PW2.py


注:本文中的numpy.hsplit函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。