本文整理汇总了Python中numpy.greater_equal函数的典型用法代码示例。如果您正苦于以下问题:Python greater_equal函数的具体用法?Python greater_equal怎么用?Python greater_equal使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了greater_equal函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plotCurves
def plotCurves(c1, c2):
name1, t, avg1, top1, bottom1 = c1
name2, t, avg2, top2, bottom2 = c2
pl.plot(t, np.zeros(len(t)), 'k-')
s1 = ma.array(avg1)
s2 = ma.array(avg2)
zx1 = np.logical_and(np.greater_equal(top1, 0), np.less_equal(bottom1, 0))
zx2 = np.logical_and(np.greater_equal(top2, 0), np.less_equal(bottom2, 0))
ix = np.logical_or(
np.logical_and(
np.greater_equal(top1, top2),
np.less_equal(bottom1, top2)),
np.logical_and(
np.greater_equal(top1, bottom2),
np.less_equal(bottom1, bottom2)))
mask1 = np.logical_or(zx1, ix)
mask2 = np.logical_or(zx2, ix)
print mask1
print mask2
print zx1
print zx2
print ix
pl.plot(t, s1, "k--", linewidth=1)
pl.plot(t, s2, "k-", linewidth=1)
s1.mask = ix
s2.mask = ix
pl.plot(t, s1, "k--", linewidth=3, label=name1)
pl.plot(t, s2, "k-", linewidth=3, label=name2)
pl.xlabel('Time (secs)')
pl.ylabel("Pearson correlation")
示例2: eval
def eval(self, band, times, z=0, k=1):
'''Evaluate, using a spline, the value of the template at specific
times, optionally with a redshift (in the sense that the times should
be blueshifted before interpolating. Also returns a mask indicating
the interpolated points (1) and the extrapolated points (0)'''
if len(num.shape(times)) == 0:
evt = num.array([times/(1+z)])
scalar = 1
else:
evt = times/(1+z)
scalar = 0
if band not in self.__dict__ and band not in ['J','H','K']:
raise AttributeError, "Sorry, band %s is not supported by dm15temp" % \
band
s = dm152s(self.dm15)
if band == 'J':
return(0.080 + evt/s*0.05104699 + 0.007064257*(evt/s)**2 - 0.000257906*(evt/s)**3,
0.0*evt/s + 0.06, num.greater_equal(evt/s, -12)*num.less_equal(evt/s, 10))
elif band == 'H':
return(0.050 + evt/s*0.0250923 + 0.001852107*(evt/s)**2 - 0.0003557824*(evt/s)**3,
0.0*evt/s + 0.08, num.greater_equal(evt/s, -12)*num.less_equal(evt/s, 10))
elif band == 'K':
return(0.042 + evt/s*0.02728437+ 0.003194500*(evt/s)**2 - 0.0004139377*(evt/s)**3,
0.0*evt/s + 0.08, num.greater_equal(evt/s, -12)*num.less_equal(evt/s, 10))
evd = self.tck[band].ev(evt/self.s, evt*0+self.dm15)
eevd = self.tck['e_'+band].ev(evt/self.s, evt*0+self.dm15)
mask = num.greater_equal(evt/self.s, -10)*num.less_equal(evt/self.s,70)
if scalar:
return(evd[0], eevd[0], mask[0])
else:
return(evd, eevd, mask)
示例3: rel_coron_thrupt
def rel_coron_thrupt(Pmod, ref_pos):
# Given 2-d off-axis PSF model over a set of positions,
# comput the FWHM throughput relative to the off-axis PSF
# at a reference (presumably peak throughput) location.
coron_thrupt = np.empty(Pmod.shape[:-2])
Pref = Pmod[ref_pos]
ref_peak = np.max(Pref)
ref_fwhm_ind = np.greater_equal(Pref, ref_peak/2)
ref_fwhm_sum = np.sum(Pref[ref_fwhm_ind])
if len(coron_thrupt.shape) == 2:
for si in range(coron_thrupt.shape[0]):
for ti in range(coron_thrupt.shape[1]):
P = Pmod[si,ti]
fwhm_ind = np.greater_equal(P, np.max(P)/2)
fwhm_sum = np.sum(P[fwhm_ind])
coron_thrupt[si,ti] = fwhm_sum/ref_fwhm_sum
elif len(coron_thrupt.shape) == 1:
for ti in range(coron_thrupt.shape[0]):
P = Pmod[ti]
fwhm_ind = np.greater_equal(P, np.max(P)/2)
fwhm_sum = np.sum(P[fwhm_ind])
coron_thrupt[ti] = fwhm_sum/ref_fwhm_sum
return coron_thrupt
示例4: ring
def ring(x, y, height, thickness, gaussian_width):
"""
Circular ring (annulus) with Gaussian fall-off after the solid ring-shaped region.
"""
radius = height/2.0
half_thickness = thickness/2.0
distance_from_origin = np.sqrt(x**2+y**2)
distance_outside_outer_disk = distance_from_origin - radius - half_thickness
distance_inside_inner_disk = radius - half_thickness - distance_from_origin
ring = 1.0-np.bitwise_xor(np.greater_equal(distance_inside_inner_disk,0.0),
np.greater_equal(distance_outside_outer_disk,0.0))
sigmasq = gaussian_width*gaussian_width
if sigmasq==0.0:
inner_falloff = x*0.0
outer_falloff = x*0.0
else:
with float_error_ignore():
inner_falloff = np.exp(np.divide(-distance_inside_inner_disk*distance_inside_inner_disk, 2.0*sigmasq))
outer_falloff = np.exp(np.divide(-distance_outside_outer_disk*distance_outside_outer_disk, 2.0*sigmasq))
return np.maximum(inner_falloff,np.maximum(outer_falloff,ring))
示例5: __call__
def __call__(self, x):
'''Interpolate at point [x]. Returns a 3-tuple: (y, mask) where [y]
is the interpolated point, and [mask] is a boolean array with the same
shape as [x] and is True where interpolated and False where extrapolated'''
if not self.setup:
self._setup()
if len(num.shape(x)) < 1:
scalar = True
else:
scalar = False
x = num.atleast_1d(x)
if self.realization:
evm = num.atleast_1d(splev(x, self.realization))
mask = num.greater_equal(x, self.realization[0][0])*\
num.less_equal(x,self.realization[0][-1])
else:
evm = num.atleast_1d(splev(x, self.tck))
mask = num.greater_equal(x, self.tck[0][0])*num.less_equal(x,self.tck[0][-1])
if scalar:
return evm[0],mask[0]
else:
return evm,mask
示例6: curveScore
def curveScore(l, curve):
lb = l["TextBB"]
elbl = [lb[0] - 20, lb[1], lb[0], lb[3]]
elbr = [lb[0], lb[1], lb[2] + 20, lb[3]]
cindex = int(curve[0])
cdata = curve[1]
# img=cdata[elb[1]:elb[3],elb[0]:elb[2]]
imgl = cdata[elbl[1] : elbl[3], elbl[0] : elbl[2]]
imgr = cdata[elbr[1] : elbr[3], elbr[0] : elbr[2]]
# print cindex,l['Text']
# show_img(imgl)
# show_img(imgr)
# points from the rectangle to the left and right of the legend word that are not white or black pixels.
lnzps = np.where(np.logical_and(np.greater_equal(imgl[:, :, 1], 0.06), np.greater_equal(imgl[:, :, 2], 0.1)))
rnzps = np.where(np.logical_and(np.greater_equal(imgr[:, :, 1], 0.06), np.greater_equal(imgr[:, :, 2], 0.1)))
if len(lnzps[0]) == 0 and len(rnzps[0]) == 0: # this means for this legend, we did not find a single pixel from the
# curve that is to the left or right of it.
# print l['Text'],"has no points to the left or right for",cindex
return (None, None, None)
elif len(lnzps[0]) != 0 and len(rnzps[0]) == 0:
# print l['Text'],"has curve",cindex,"to the left of it, distance:",100-np.sort(lnzps[0])[-1]
return (cindex, "l", 20 - np.sort(lnzps[0])[-1])
elif len(lnzps[0]) == 0 and len(rnzps[0]) != 0:
# print l['Text'],"has curve",cindex,"to the right of it, distance:",np.sort(rnzps[0])[0]
return (cindex, "r", np.sort(rnzps[0])[0])
else: # this means, some points from this curve belongs to both left and the right of the legend. That is improbable.
print "Something wrong, a single curve has pixels on both sides of the image "
return (None, None)
示例7: radial_contrast_flr
def radial_contrast_flr(image, xc, yc, seps, zw, coron_thrupt, klip_thrupt=None):
rad_flr_ctc = np.empty((len(seps)))
assert(len(seps) == len(coron_thrupt))
if klip_thrupt is not None:
assert(len(seps) == len(klip_thrupt))
rad_flr_ctc_ktc = np.empty((len(seps)))
else:
rad_flr_ctc_ktc = None
imh = image.shape[0]
imw = image.shape[1]
xs = np.arange(imw) - xc
ys = np.arange(imh) - yc
XXs, YYs = np.meshgrid(xs, ys)
RRs = np.sqrt(XXs**2 + YYs**2)
for si, sep in enumerate(seps):
r_in = np.max([seps[0], sep-zw/2.])
r_out = np.min([seps[-1], sep+zw/2.])
meas_ann_mask = np.logical_and(np.greater_equal(RRs, r_in),
np.less_equal(RRs, r_out))
meas_ann_ind = np.nonzero(np.logical_and(np.greater_equal(RRs, r_in).ravel(),
np.less_equal(RRs, r_out).ravel()))[0]
meas_ann = np.ravel(image)[meas_ann_ind]
rad_flr_ctc[si] = np.nanstd(meas_ann)/coron_thrupt[si]
if rad_flr_ctc_ktc is not None:
rad_flr_ctc_ktc[si] = np.nanstd(meas_ann)/coron_thrupt[si]/klip_thrupt[si]
#pdb.set_trace()
return rad_flr_ctc, rad_flr_ctc_ktc
示例8: filter
def filter(mask, cube, header, clipMethod, threshold, rmsMode, verbose):
if clipMethod == 'relative':
# determine the clip level
# Measure noise in original cube
# rms = GetRMS(cube,rmsmode=rmsMode,zoomx=1,zoomy=1,zoomz=100000,verb=verbose,nrbins=100000)
rms = GetRMS(cube, rmsMode=rmsMode, zoomx=1, zoomy=1, zoomz=1, verbose=verbose)
print 'Estimated rms = ', rms
clip = threshold * rms
if clipMethod == 'absolute':
clip = threshold
print 'using clip threshold: ', clip
#return ((cube >= clip)+(cube <= -1*clip))
# check whether there are NaNs
nan_mask = np.isnan(cube)
found_nan=nan_mask.sum()
if found_nan:
cube=np.nan_to_num(cube)
np.logical_or(mask, (np.greater_equal(cube, clip) + np.less_equal(cube, -clip)), mask)
cube[nan_mask]=np.nan
else:
np.logical_or(mask, (np.greater_equal(cube, clip) + np.less_equal(cube, -clip)), mask)
return
示例9: getMaxPoints
def getMaxPoints(arr):
# [TODO] Work out for RGB rather than array, and maybe we don't need the filter, but hopefully speeds it up.
# Reference http://scipy-cookbook.readthedocs.io/items/FiltFilt.html
arra = filtfilt(b,a,arr)
maxp = maxpoints(arra, order=(len(arra)/20), mode='wrap')
minp = minpoints(arra, order=(len(arra)/20), mode='wrap')
points = []
for i in range(3):
mas = np.equal(np.greater_equal(maxp,(i*(len(arra)/3))), np.less_equal(maxp,((i+1)*len(arra)/3)))
k = np.compress(mas[0], maxp)
if len(k)==0:
continue
points.append(sum(k)/len(k))
if len(points) == 1:
return points, []
points = np.compress(np.greater_equal(arra[points],(max(arra)-min(arra))*0.40 + min(arra)),points)
rifts = []
for i in range(len(points)-1):
mas = np.equal(np.greater_equal(minp, points[i]),np.less_equal(minp,points[i+1]))
k = np.compress(mas[0], minp)
rifts.append(k[arra[k].argmin()])
return points, rifts
示例10: _calc_uncorr_gene_score
def _calc_uncorr_gene_score(gene, input_gene, input_snp, pruned_snps, hotspots):
# find local snps given a gene
cond_snps_near_gene = logical_and(np.equal(input_snp[:, 0], input_gene[gene, 0]),
np.greater_equal(input_snp[:, 1], input_gene[gene, 1]),
np.less_equal(input_snp[:, 1], input_gene[gene, 2]))
# if no snps found
if not np.any(cond_snps_near_gene):
return (np.nan, 0, 1, 0, 0)
n_snps_zscore_finite = np.sum(np.isfinite(input_snp[cond_snps_near_gene][:, 3]))
# if no snps with finite zcore
if n_snps_zscore_finite == 0:
return (np.nan, 0, 1, 0, 0)
n_snps_per_gene = n_snps_zscore_finite
# use p-value to find most significant SNP
idx_min_pval = np.nanargmin(input_snp[cond_snps_near_gene][:, 3])
uncorr_score = input_snp[cond_snps_near_gene][idx_min_pval, 2]
# count number of independent SNPs per gene
n_indep_snps_per_gene = np.sum(logical_and(np.equal(pruned_snps[:, 0], input_gene[gene, 0]),
np.greater_equal(pruned_snps[:, 1], input_gene[gene, 1]),
np.less_equal(pruned_snps[:, 1], input_gene[gene, 2])))
# count number of hotspots per gene
n_hotspots_per_gene = np.sum(np.logical_and(np.equal(hotspots[:, 0], input_gene[gene, 0]),
np.greater(np.fmin(hotspots[:, 2], input_gene[gene, 2])
- np.fmax(hotspots[:, 1], input_gene[gene, 1]), 0)))
return (uncorr_score, n_snps_per_gene, 0, n_indep_snps_per_gene, n_hotspots_per_gene)
示例11: minima_in_range
def minima_in_range(r, g_r, r_min, r_max):
"""Find the minima in a range of r, g_r values"""
idx = np.where(np.logical_and(np.greater_equal(r, r_min), np.greater_equal(r_max, r)))
g_r_slice = g_r[idx]
g_r_min = g_r_slice[g_r_slice.argmin()]
idx_min, _ = find_nearest(g_r, g_r_min)
return r[idx_min], g_r[idx_min]
示例12: parallel_point_test
def parallel_point_test(center,dim,x,y,z):
'''
Overview:
Determines whether a given point is in a parallelapiped given the point
being tested and the relevant parameters.
Parameters:
center:(float,[3]|angstroms) = The coordinates of the center of the
parallelapiped. This parameter is in the form (x center,y center, z center)
dim:(float,[3]|angstroms) = The x, y and z dimensions of the parallelapiped
object.
x,y,z:(float|angstroms) = coordinates for the point being tested.
Note:
-The API is left intentionally independent of the class structures used in
sample_prep.py to allow for code resuabilitiy.
'''
low_lim = (array(center) - (array(dim)/2.0))
high_lim = (array(center) +(array(dim)/2.0))
height_lim = greater_equal (z,low_lim[2])*less_equal (z,high_lim[2])
length_lim = greater_equal (y,low_lim[1])*less_equal (y,high_lim[1])
width_lim = greater_equal (x,low_lim[0])*less_equal (x,high_lim[0])
test_results = height_lim * length_lim * width_lim
return test_results
示例13: arc_by_radian
def arc_by_radian(x, y, height, radian_range, thickness, gaussian_width):
"""
Radial arc with Gaussian fall-off after the solid ring-shaped
region with the given thickness, with shape specified by the
(start,end) radian_range.
"""
# Create a circular ring (copied from the ring function)
radius = height/2.0
half_thickness = thickness/2.0
distance_from_origin = np.sqrt(x**2+y**2)
distance_outside_outer_disk = distance_from_origin - radius - half_thickness
distance_inside_inner_disk = radius - half_thickness - distance_from_origin
ring = 1.0-np.bitwise_xor(np.greater_equal(distance_inside_inner_disk,0.0),
np.greater_equal(distance_outside_outer_disk,0.0))
sigmasq = gaussian_width*gaussian_width
if sigmasq==0.0:
inner_falloff = x*0.0
outer_falloff = x*0.0
else:
with float_error_ignore():
inner_falloff = np.exp(np.divide(-distance_inside_inner_disk*distance_inside_inner_disk, 2.0*sigmasq))
outer_falloff = np.exp(np.divide(-distance_outside_outer_disk*distance_outside_outer_disk, 2.0*sigmasq))
output_ring = np.maximum(inner_falloff,np.maximum(outer_falloff,ring))
# Calculate radians (in 4 phases) and cut according to the set range)
# RZHACKALERT:
# Function float_error_ignore() cannot catch the exception when
# both np.dividend and divisor are 0.0, and when only divisor is 0.0
# it returns 'Inf' rather than 0.0. In x, y and
# distance_from_origin, only one point in distance_from_origin can
# be 0.0 (circle center) and in this point x and y must be 0.0 as
# well. So here is a hack to avoid the 'invalid value encountered
# in divide' error by turning 0.0 to 1e-5 in distance_from_origin.
distance_from_origin += np.where(distance_from_origin == 0.0, 1e-5, 0)
with float_error_ignore():
sines = np.divide(y, distance_from_origin)
cosines = np.divide(x, distance_from_origin)
arcsines = np.arcsin(sines)
phase_1 = np.where(np.logical_and(sines >= 0, cosines >= 0), 2*pi-arcsines, 0)
phase_2 = np.where(np.logical_and(sines >= 0, cosines < 0), pi+arcsines, 0)
phase_3 = np.where(np.logical_and(sines < 0, cosines < 0), pi+arcsines, 0)
phase_4 = np.where(np.logical_and(sines < 0, cosines >= 0), -arcsines, 0)
arcsines = phase_1 + phase_2 + phase_3 + phase_4
if radian_range[0] <= radian_range[1]:
return np.where(np.logical_and(arcsines >= radian_range[0], arcsines <= radian_range[1]),
output_ring, 0.0)
else:
return np.where(np.logical_or(arcsines >= radian_range[0], arcsines <= radian_range[1]),
output_ring, 0.0)
示例14: cone_point_test
def cone_point_test(center,dim,stub,x,y,z):
'''
Overview:
Determines whether a given point is in an cone given the point being
tested and the relevant parameters..
Parameters:
center:float,[3]|angstroms) = The x, y, and z component of the central
point of the ellipsoid. In the case that the center is set to
[None,None,None] the shape will be put in the bottom corner of the unit cell
(the bounding box will start at (0,0,0).
dim:(float,[3]|angstroms) = The x component, y component and thickness
of the cone respectively. x is the radius of the cone base in the x
direction and b is the radius of the cone base in the y direction.
stub:(float|angstroms) = provides a hard cut-off for the thickness of the
cone. this allows for the creation of a truncated cone object who side slope
can be altered by using different z component values while keeping the stub
parameter fixed.
x,y,z:(float|angstroms) = coordinates for the point being tested.
Notes:
-To solve this equation more efficiently, the program takes in an array of
x,y and z so that x[size(x),1,1], y[1,size(y),1], z[1,1,size(z)]. This
module then solves each part of the test individually and takes the product.
Only the points where all of the inquires are True will be left as true in
the test_results array
-The API is left intentionally independent of the class structures used in
sample_prep.py to allow for code resuabilitiy.
'''
a_angle = arctan(dim[2]/dim[0])
b_angle = arctan(dim[2]/dim[1])
low_height_lim = greater_equal (z,(center[2] - dim[2]/2))
if stub == None:
up_height_lim = less_equal (z,(center[2] + dim[2]/2))
else:
up_height_lim = less_equal (z,(center[2] + stub/2))
xy_test = ((((x-center[0])**2)/((((center[2] +
dim[2]/2)-z)/tan(a_angle))**2))+(((y-center[1])**2)/((((center[2] +
dim[2]/2)-z)/tan(b_angle))**2)))
in_plane_low_lim = less_equal (0.0,xy_test)
in_plane_high_lim = greater_equal (1.0,xy_test)
test_results = (low_height_lim * up_height_lim * in_plane_low_lim *
in_plane_high_lim)
return test_results
示例15: __ge__
def __ge__(a, b):
try:
return np.greater_equal(a.v, b.v)
except AttributeError:
if isinstance(a, Measurement):
return np.greater_equal(a.v, b)
else:
return np.greater_equal(a, b.v)