当前位置: 首页>>代码示例>>Python>>正文


Python numpy.geterr函数代码示例

本文整理汇总了Python中numpy.geterr函数的典型用法代码示例。如果您正苦于以下问题:Python geterr函数的具体用法?Python geterr怎么用?Python geterr使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了geterr函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_log2

    def test_log2(self):
        """log2: should work fine on positive/negative numbers and zero"""
        self.assertEqual(log2(1),0)
        self.assertEqual(log2(2),1)
        self.assertEqual(log2(4),2)
        self.assertEqual(log2(8),3)

        #SUPPORT2425
        #with numpy_err(divide='ignore'):
        ori_err = numpy.geterr()
        numpy.seterr(divide='ignore')
        try:
            try:
                self.assertEqual(log2(0),float('-inf'))
            except (ValueError, OverflowError):      #platform-dependent
                pass
        finally:
            numpy.seterr(**ori_err)

        #SUPPORT2425
        ori_err = numpy.geterr()
        numpy.seterr(divide='raise')
        try:
        #with numpy_err(divide='raise'):
            self.assertRaises(FloatingPointError, log2, 0)
        finally:
            numpy.seterr(**ori_err)

        #nan is the only thing that's not equal to itself
        try:
            self.assertNotEqual(log2(-1),log2(-1)) #now nan
        except ValueError:
            pass
开发者ID:GavinHuttley,项目名称:pycogent,代码行数:33,代码来源:test_array.py

示例2: test_ppsd_plot_cumulative

 def test_ppsd_plot_cumulative(self):
     """
     Test plot of ppsd example data, cumulative style.
     """
     # Catch underflow warnings due to plotting on log-scale.
     _t = np.geterr()
     np.seterr(all="ignore")
     try:
         with ImageComparison(self.path, 'ppsd_cumulative.png',
                              reltol=1.5) as ic:
             self.ppsd.plot(
                 show=False, show_coverage=True, show_histogram=True,
                 show_noise_models=True, grid=True, period_lim=(0.02, 100),
                 cumulative=True,
                 # This does not do anything but silences a warning that
                 # the `cumulative` and `max_percentage` arguments cannot
                 #  be used at the same time.
                 max_percentage=None)
             fig = plt.gcf()
             ax = fig.axes[0]
             ax.set_ylim(-160, -130)
             plt.draw()
             fig.savefig(ic.name)
     finally:
         np.seterr(**_t)
开发者ID:Keita1,项目名称:obspy,代码行数:25,代码来源:test_ppsd.py

示例3: test_smoothingMatrix

 def test_smoothingMatrix(self):
     """
     Tests some aspects of the matrix.
     """
     # Disable div by zero errors.
     temp = np.geterr()
     np.seterr(all="ignore")
     frequencies = np.array([0.0, 1.0, 2.0, 10.0, 25.0, 50.0, 100.0], dtype=np.float32)
     matrix = calculateSmoothingMatrix(frequencies, 20.0)
     self.assertEqual(matrix.dtype, np.float32)
     for _i, freq in enumerate(frequencies):
         np.testing.assert_array_equal(matrix[_i], konnoOhmachiSmoothingWindow(frequencies, freq, 20.0))
         # Should not be normalized. Test only for larger frequencies
         # because smaller ones have a smaller window.
         if freq >= 10.0:
             self.assertTrue(matrix[_i].sum() > 1.0)
     # Input should be output dtype.
     frequencies = np.array([0.0, 1.0, 2.0, 10.0, 25.0, 50.0, 100.0], dtype=np.float64)
     matrix = calculateSmoothingMatrix(frequencies, 20.0)
     self.assertEqual(matrix.dtype, np.float64)
     # Check normalization.
     frequencies = np.array([0.0, 1.0, 2.0, 10.0, 25.0, 50.0, 100.0], dtype=np.float32)
     matrix = calculateSmoothingMatrix(frequencies, 20.0, normalize=True)
     self.assertEqual(matrix.dtype, np.float32)
     for _i, freq in enumerate(frequencies):
         np.testing.assert_array_equal(
             matrix[_i], konnoOhmachiSmoothingWindow(frequencies, freq, 20.0, normalize=True)
         )
         # Should not be normalized. Test only for larger frequencies
         # because smaller ones have a smaller window.
         self.assertAlmostEqual(matrix[_i].sum(), 1.0, 5)
     np.seterr(**temp)
开发者ID:krischer,项目名称:obspy,代码行数:32,代码来源:test_konnoohmachi.py

示例4: setUp

 def setUp(self):
     # Most generic way to get the actual data directory.
     self.data_dir = os.path.join(os.path.dirname(os.path.abspath(
         inspect.getfile(inspect.currentframe()))), "data")
     self.image_dir = os.path.join(os.path.dirname(__file__), 'images')
     self.nperr = np.geterr()
     np.seterr(all='ignore')
开发者ID:AntonyButcher,项目名称:obspy,代码行数:7,代码来源:test_response.py

示例5: H_mag

def H_mag(num, den, z, H_max, H_min = None, log = False, div_by_0 = 'ignore'):
    """
    Calculate `|H(z)|` at the complex frequency(ies) `z` (scalar or
    array-like).  The function `H(z)` is given in polynomial form with numerator and
    denominator. When log = True, `20 log_10 (|H(z)|)` is returned.

    The result is clipped at H_min, H_max; clipping can be disabled by passing
    None as the argument.

    Parameters
    ----------
    num : float or array-like
        The numerator polynome of H(z).
    den : float or array-like
        The denominator polynome of H(z).
    z : float or array-like
        The complex frequency(ies) where `H(z)` is to be evaluated
    H_max : float
        The maximum value to which the result is clipped
    H_min : float, optional
        The minimum value to which the result is clipped (default: 0)
    log : boolean, optional
        When true, return 20 * log10 (|H(z)|). The clipping limits have to
        be given as dB in this case.
    div_by_0 : string, optional
        What to do when division by zero occurs during calculation (default:
        'ignore'). As the denomintor of H(z) becomes 0 at each pole, warnings
        are suppressed by default. This parameter is passed to numpy.seterr(),
        hence other valid options are 'warn', 'raise' and 'print'.

    Returns
    -------
    H_mag : float or ndarray
        The magnitude |`H(z)`| for each value of `z`.
    """

    try: len(num)
    except TypeError:
        num_val = abs(num) # numerator is a scalar
    else:
        num_val = abs(np.polyval(num, z)) # evaluate numerator at z
    try: len(den)
    except TypeError:
        den_val = abs(den) # denominator is a scalar
    else:
        den_val = abs(np.polyval(den, z)) # evaluate denominator at z

    olderr = np.geterr()  # store current floating point error behaviour
    # turn off divide by zero warnings, just return 'inf':
    np.seterr(divide = 'ignore')

    if log:
        H_val = 20 * np.log10(num_val / den_val)
    else:
        H_val = num_val / den_val

    np.seterr(**olderr) # restore previous floating point error behaviour

    # clip result to H_min / H_max
    return np.clip(H_val, H_min, H_max)
开发者ID:euripedesrocha,项目名称:pyFDA,代码行数:60,代码来源:pyfda_lib.py

示例6: test_scale_trace

    def test_scale_trace(self):
        """scale_trace should scale trace to correct values"""
        #should scale to -1 by default
        #WARNING: won't work with integer matrices
        m = array([[-2., 0],[0,-2]])
        scale_trace(m)
        self.assertFloatEqual(m, [[-0.5, 0],[0,-0.5]])
        #should work even with zero rows
        m = array([
                [1.0,2,3,4],
                [2,4,4,0],
                [1,1,0,1],
                [0,0,0,0]
        ])
        m_orig = m.copy()
        scale_trace(m)
        self.assertFloatEqual(m, m_orig / -5)
        #but should fail if trace is zero
        m = array([[0,1,1],[1,0,1],[1,1,0]])

        #SUPPORT2425
        ori_err = numpy.geterr()
        numpy.seterr(divide='raise')
        try:
        #with numpy_err(divide='raise'):
            self.assertRaises((ZeroDivisionError, FloatingPointError), \
                scale_trace, m)
        finally:
            numpy.seterr(**ori_err)
开发者ID:GavinHuttley,项目名称:pycogent,代码行数:29,代码来源:test_array.py

示例7: less

def less(a, b):
    """return a < b, while comparing nan results in False without warning"""
    current_err_setting = np.geterr()
    np.seterr(invalid='ignore')
    res = a < b
    np.seterr(**current_err_setting)
    return res
开发者ID:brockho,项目名称:numbbo,代码行数:7,代码来源:toolsdivers.py

示例8: test_numpy_err_state_is_default

def test_numpy_err_state_is_default():
    expected = {"over": "warn", "divide": "warn",
                "invalid": "warn", "under": "ignore"}
    import numpy as np

    # The error state should be unchanged after that import.
    assert np.geterr() == expected
开发者ID:forking-repos,项目名称:pandas,代码行数:7,代码来源:test_util.py

示例9: test_smoothingWindow

 def test_smoothingWindow(self):
     """
     Tests the creation of the smoothing window.
     """
     # Disable div by zero errors.
     temp = np.geterr()
     np.seterr(all="ignore")
     # Frequency of zero results in a delta peak at zero (there usually
     # should be just one zero in the frequency array.
     window = konnoOhmachiSmoothingWindow(np.array([0, 1, 0, 3], dtype=np.float32), 0)
     np.testing.assert_array_equal(window, np.array([1, 0, 1, 0], dtype=np.float32))
     # Wrong dtypes raises.
     self.assertRaises(ValueError, konnoOhmachiSmoothingWindow, np.arange(10, dtype=np.int32), 10)
     # If frequency=center frequency, log results in infinity. Limit of
     # whole formulae is 1.
     window = konnoOhmachiSmoothingWindow(np.array([5.0, 1.0, 5.0, 2.0], dtype=np.float32), 5)
     np.testing.assert_array_equal(window[[0, 2]], np.array([1.0, 1.0], dtype=np.float32))
     # Output dtype should be the dtype of frequencies.
     self.assertEqual(konnoOhmachiSmoothingWindow(np.array([1, 6, 12], dtype=np.float32), 5).dtype, np.float32)
     self.assertEqual(konnoOhmachiSmoothingWindow(np.array([1, 6, 12], dtype=np.float64), 5).dtype, np.float64)
     # Check if normalizing works.
     window = konnoOhmachiSmoothingWindow(self.frequencies, 20)
     self.assertTrue(window.sum() > 1.0)
     window = konnoOhmachiSmoothingWindow(self.frequencies, 20, normalize=True)
     self.assertAlmostEqual(window.sum(), 1.0, 5)
     # Just one more to test if there are no invalid values and the range if
     # ok.
     window = konnoOhmachiSmoothingWindow(self.frequencies, 20)
     self.assertEqual(np.any(np.isnan(window)), False)
     self.assertEqual(np.any(np.isinf(window)), False)
     self.assertTrue(np.all(window <= 1.0))
     self.assertTrue(np.all(window >= 0.0))
     np.seterr(**temp)
开发者ID:krischer,项目名称:obspy,代码行数:33,代码来源:test_konnoohmachi.py

示例10: __init__

    def __init__(self, hidden_layers=[32]):
        restore_these_settings = np.geterr()

        temp_settings = restore_these_settings.copy()
        temp_settings["over"] = "ignore"
        temp_settings["under"] = "ignore"

        np.seterr(**temp_settings)
        np.seterr(**restore_these_settings)

        self.input_nodes = 65  # number of input nodes + 1 for the bias
        self.hidden_layers = hidden_layers  # list containing the number of hidden nodes and number of nodes per layer
        self.output_nodes = 10  # number of output nodes
        self.alpha = 1.0  # scalar used when back propagating the errors

        # initialize the weights which are is a list of nxm 2d arrays where each weight corresponds to a layer
        self.weights = [
            np.random.random_sample((self.input_nodes, self.hidden_layers[0])) * .09 + .01
        ]

        for i in range(len(hidden_layers) - 1):
            self.weights.append(
                np.random.random_sample((self.hidden_layers[i], self.hidden_layers[i + 1])) * .09 + .01)

        self.weights.append(
            np.random.random_sample((self.hidden_layers[-1], self.output_nodes)) * .09 + .01)
开发者ID:mikegwyn17,项目名称:ANN,代码行数:26,代码来源:NeuralNet.py

示例11: test_numerical_stability

def test_numerical_stability():
    """Check numerical stability."""
    old_settings = np.geterr()
    np.seterr(all="raise")

    X = np.array(
        [
            [152.08097839, 140.40744019, 129.75102234, 159.90493774],
            [142.50700378, 135.81935120, 117.82884979, 162.75781250],
            [127.28772736, 140.40744019, 129.75102234, 159.90493774],
            [132.37025452, 143.71923828, 138.35694885, 157.84558105],
            [103.10237122, 143.71928406, 138.35696411, 157.84559631],
            [127.71276855, 143.71923828, 138.35694885, 157.84558105],
            [120.91514587, 140.40744019, 129.75102234, 159.90493774],
        ]
    )

    y = np.array([1.0, 0.70209277, 0.53896582, 0.0, 0.90914464, 0.48026916, 0.49622521])

    dt = tree.DecisionTreeRegressor()
    dt.fit(X, y)
    dt.fit(X, -y)
    dt.fit(-X, y)
    dt.fit(-X, -y)

    np.seterr(**old_settings)
开发者ID:mugiro,项目名称:elm-python,代码行数:26,代码来源:test_tree.py

示例12: VMLookupTable

def VMLookupTable():
    try:  # try loading ordered dict
        from collections import OrderedDict
    except ImportError:  # not installed, try on pythonpath
        try:
            from OrderedDict import OrderedDict
        except ImportError:
            "PyNoddy requires OrderedDict to run. Please download it and make it available on the pythonpath."

    kappa_lookup = OrderedDict()


    #disable numpy warnings
    err = np.geterr()
    np.seterr(all='ignore')
    
    
    # build lookup table
    for k in range(1000, 100, -20):
        ci = sc.stats.vonmises.interval(0.95, k)
        kappa_lookup[ci[1]] = k
    for k in range(100, 10, -1):
        ci = sc.stats.vonmises.interval(0.95, k)
        kappa_lookup[ci[1]] = k
    for k in np.arange(10, 0, -0.1):
        ci = sc.stats.vonmises.interval(0.95, k)
        kappa_lookup[ci[1]] = k

    #re-enable numpy warnings
    np.seterr(**err)
    
    # return lookup table
    return kappa_lookup
开发者ID:Leguark,项目名称:pynoddy,代码行数:33,代码来源:sampling.py

示例13: __enter__

 def __enter__(self):
     try:
         import numpy
     except ImportError:
         return None
     self.errstate = numpy.geterr()
     numpy.seterr(invalid="ignore")
     return numpy
开发者ID:histogrammar,项目名称:histogrammar-python,代码行数:8,代码来源:testnumpy.py

示例14: test_numpy_errstate_is_default

def test_numpy_errstate_is_default():
    # The defaults since numpy 1.6.0
    expected = {'over': 'warn', 'divide': 'warn', 'invalid': 'warn',
                'under': 'ignore'}
    import numpy as np
    from pandas.compat import numpy  # noqa
    # The errstate should be unchanged after that import.
    assert np.geterr() == expected
开发者ID:ankostis,项目名称:pandas,代码行数:8,代码来源:test_util.py

示例15: wrapped

 def wrapped(e):
     old_settings = np.geterr()
     np.seterr(invalid="raise")
     try:
         return func(e)
     except exception:
         warnings.warn(msg + " " + e.fname, exc.EmptyStep)
     np.seterr(**old_settings)
开发者ID:jjmantilla,项目名称:FilesM,代码行数:8,代码来源:Segmentation.py


注:本文中的numpy.geterr函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。