当前位置: 首页>>代码示例>>Python>>正文


Python numpy.frompyfunc函数代码示例

本文整理汇总了Python中numpy.frompyfunc函数的典型用法代码示例。如果您正苦于以下问题:Python frompyfunc函数的具体用法?Python frompyfunc怎么用?Python frompyfunc使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了frompyfunc函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_frompyfunc_2d_sig

    def test_frompyfunc_2d_sig(self):
        import sys
        from numpy import frompyfunc, dtype, arange

        if "__pypy__" not in sys.builtin_module_names:
            skip("PyPy only frompyfunc extension")

        def times_2(in_array, out_array):
            assert len(in_array.shape) == 2
            assert in_array.shape == out_array.shape
            out_array[:] = in_array * 2

        ufunc = frompyfunc(
            [times_2], 1, 1, signature="(m,n)->(n,m)", dtypes=[dtype(int), dtype(int)], stack_inputs=True
        )
        ai = arange(18, dtype=int).reshape(2, 3, 3)
        ai3 = ufunc(ai[0, :, :])
        ai2 = ufunc(ai)
        assert (ai2 == ai * 2).all()

        ufunc = frompyfunc(
            [times_2], 1, 1, signature="(m,m)->(m,m)", dtypes=[dtype(int), dtype(int)], stack_inputs=True
        )
        ai = arange(12 * 3 * 3, dtype="int32").reshape(12, 3, 3)
        exc = raises(ValueError, ufunc, ai[:, :, 0])
        assert "perand 0 has a mismatch in its core dimension 1" in exc.value.message
        ai3 = ufunc(ai[0, :, :])
        ai2 = ufunc(ai)
        assert (ai2 == ai * 2).all()
        # view
        aiV = ai[::-2, :, :]
        assert aiV.strides == (-72, 12, 4)
        ai2 = ufunc(aiV)
        assert (ai2 == aiV * 2).all()
开发者ID:Qointum,项目名称:pypy,代码行数:34,代码来源:test_ufuncs.py

示例2: read_file

def read_file ( filename ):
    """
    Lit un fichier USPS et renvoie un tableau de tableaux d'images.
    Chaque image est un tableau de nombres réels.
    Chaque tableau d'images contient des images de la même classe.
    Ainsi, T = read_file ( "fichier" ) est tel que T[0] est le tableau
    des images de la classe 0, T[1] contient celui des images de la classe 1,
    et ainsi de suite.
    """
    # lecture de l'en-tête
    infile = open ( filename, "r" )    
    nb_classes, nb_features = [ int( x ) for x in infile.readline().split() ]

    # creation de la structure de données pour sauver les images :
    # c'est un tableau de listes (1 par classe)
    data = np.empty ( 10, dtype=object )   
    filler = np.frompyfunc(lambda x: list(), 1, 1)
    filler( data, data )

    # lecture des images du fichier et tri, classe par classe
    for ligne in infile:
        champs = ligne.split ()
        if len ( champs ) == nb_features + 1:
            classe = int ( champs.pop ( 0 ) )
            data[classe].append ( map ( lambda x: float(x), champs ) )     
    infile.close ()

    # transformation des list en array
    output  = np.empty ( 10, dtype=object )
    filler2 = np.frompyfunc(lambda x: np.asarray (x), 1, 1)
    filler2 ( data, output )

    return output
开发者ID:hippunk,项目名称:Etudes,代码行数:33,代码来源:tme3.py

示例3: test_frompyfunc_sig_broadcast

    def test_frompyfunc_sig_broadcast(self):
        import sys
        from numpy import frompyfunc, dtype, arange

        if "__pypy__" not in sys.builtin_module_names:
            skip("PyPy only frompyfunc extension")

        def sum_along_0(in_array, out_array):
            out_array[...] = in_array.sum(axis=0)

        def add_two(in0, in1, out):
            out[...] = in0 + in1

        ufunc_add = frompyfunc(
            add_two,
            2,
            1,
            signature="(m,n),(m,n)->(m,n)",
            dtypes=[dtype(int), dtype(int), dtype(int)],
            stack_inputs=True,
        )
        ufunc_sum = frompyfunc(
            [sum_along_0], 1, 1, signature="(m,n)->(n)", dtypes=[dtype(int), dtype(int)], stack_inputs=True
        )
        ai = arange(18, dtype=int).reshape(3, 2, 3)
        aout = ufunc_add(ai, ai[0, :, :])
        assert aout.shape == (3, 2, 3)
        aout = ufunc_sum(ai)
        assert aout.shape == (3, 3)
开发者ID:Qointum,项目名称:pypy,代码行数:29,代码来源:test_ufuncs.py

示例4: plot_time_function

    def plot_time_function(self, p):
        """Plot the time function.
        """
        n_steps = self.n_steps
        mats = self.mats
        step_size = self.step_size

        ls_t = linspace(0, step_size * n_steps, n_steps + 1)
        ls_fn = frompyfunc(self.time_function, 1, 1)
        ls_v = ls_fn(ls_t)

        p.subplot(321)
        p.plot(ls_t, ls_v, "ro-")

        final_epsilon = self.final_displ / self.length

        kappa = linspace(mats.epsilon_0, final_epsilon, 10)
        omega_fn = frompyfunc(lambda kappa: mats._get_omega(None, kappa), 1, 1)
        omega = omega_fn(kappa)
        kappa_scaled = step_size + (1 - step_size) * (kappa - mats.epsilon_0) / (final_epsilon - mats.epsilon_0)
        xdata = hstack([array([0.0], dtype=float), kappa_scaled])
        ydata = hstack([array([0.0], dtype=float), omega])
        p.plot(xdata, ydata, "g")
        p.xlabel("regular time [-]")
        p.ylabel("scaled time [-]")
开发者ID:axelvonderheide,项目名称:scratch,代码行数:25,代码来源:crackloc_avg.py

示例5: mov_average_expw

def mov_average_expw(data, span, tol=1e-6):
    """Calculates the exponentially weighted moving average of a series.

:Parameters:
    $$data$$
    span : int 
        Time periods. The smoothing factor is 2/(span + 1)
    tol : float, *[1e-6]*
        Tolerance for the definition of the mask. When data contains masked 
        values, this parameter determinea what points in the result should be masked.
        Values in the result that would not be "significantly" impacted (as 
        determined by this parameter) by the masked values are left unmasked."""

    data = marray(data, copy=True, subok=True)
    ismasked = (data._mask is not nomask)
    data._mask = N.zeros(data.shape, bool_)
    _data = data._data
    #
    k = 2./float(span + 1)
    def expmave_sub(a, b):
        return a + k * (b - a)
    #
    data._data.flat = N.frompyfunc(expmave_sub, 2, 1).accumulate(_data)
    if ismasked:
        _unmasked = N.logical_not(data._mask).astype(float_)
        marker = 1. - N.frompyfunc(expmave_sub, 2, 1).accumulate(_unmasked)
        data._mask[marker > tol] = True
    data._mask[0] = True
    #
    return data
开发者ID:mbentz80,项目名称:jzigbeercp,代码行数:30,代码来源:moving_funcs.py

示例6: __get_function__

def __get_function__(astr, width):
    f = np.cos
    if astr == "cosine":
        f = np.cos
    elif astr == "rampup":
        f = np.frompyfunc(
            lambda x: w.ramp_up(x, width),
            1, 1
            )
    elif astr == "rampdown":
        f = np.frompyfunc(
            lambda x: w.ramp_down(x, width),
            1, 1
            )
    elif astr == "impulse":
        f = np.frompyfunc(
            lambda x: w.impulse(x, width),
            1, 1
            )
    elif astr == "step":
        f = np.frompyfunc(
            lambda x: w.step(x, width),
            1, 1
            )
    else:
        f = np.cos
    return f
开发者ID:alanlhutchison,项目名称:pyJTK,代码行数:27,代码来源:run_JTKCYCLE.py

示例7: __init__

    def __init__(self, rng, nin, nout, activation=logistic, activation_prime=dlogistic, W=None, b=None, inputs=None, learningRate=.9):
        self.ActivationFn = np.frompyfunc(activation, 1, 1)
        self.DActivationFn = np.frompyfunc(activation_prime, 1, 1)
        self.inputs = inputs
        self.activations = None
        self.activationHistory = None
        self.outputs = None
        self.outputHistory = None
        self.learningRate = learningRate
        self.momentumFactor = .7
        self.previousDelta = None
        self.previousbDelta = None

        if not W:
            self.W = np.asarray(
                rng.uniform(
                    low=4 * np.sqrt(6.0 / (nin + nout)),     # generic range of values
                    high=-4 * np.sqrt(6.0 / (nin + nout)),
                    size=(nin, nout)
                )
                , dtype=float
            )
        else:
            self.W = W
        if not b:
            self.b = np.zeros(nout)
        else:
            self.b = b
开发者ID:copyfun,项目名称:python-deep-speech,代码行数:28,代码来源:bdrnn.py

示例8: polar_workspace_init

    def polar_workspace_init(radial_bins=256, angular_bins=256,
                             max_radius=None, centre=None): 
        #if (centre == None) and self.centre == None:
            #pass # Raise an exception

        xdim = self.image.shape[0]
        ydim = self.image.shape[1]

        if centre == None:
            xc = xdim * 0.5
            yc = ydim * 0.5 
        else:
            xc = centre[0]
            yc = centre[1]

        # Calculate minimum distance from centre to edge of image - this
        # determines the maximum radius in the polar image
        xsize = min (xdim + 0.5 - xc, xc)
        ysize = min (ydim + 0.5 - yc, yc)
        max_rad = m.sqrt(xsize**2 + ysize**2)

        if max_radius == None:
            max_radius = max_rad
        elif max_radius > max_rad:
            raise ValueError
        
        # Set up interpolation - cubic spline with no smoothing by default 
        x = numpy.indices((xdim,)) + 0.5 - centre[0]
        y = numpy.indices((ydim,)) + 0.5 - centre[1]
        interp = spint.RectBivariateSpline(x, y, self.image)

        # Polar image bin widths
        theta_bin_width = (2.0 * math.pi) / (theta_bins - 1.0)
        radial_bin_width = max_radius / (radial_bins - 1.0)

        # Calculate polar image values - use vectorization for efficiency
        # Because we broadcast when using a ufunc (created by frompyfunc
        # below), we could get away with an ogrid here to save time and space?
        r, theta = numpy.mgrid[0:radial_bins, 0:angular_bins]
        theta = (theta + 0.5) * theta_bin_width
        r = (r + 0.5) * radial_bin_width

        def polar_pix_val(r, theta):
            # Should we use the numpy.sin/cos functions here for more
            # efficiency ?
            return interp.ev(r * m.sin(theta), r * m.cos(theta))

        numpy.frompyfunc(polar_pix_val, 2, 1)
        self.pimage = polar_pix_val(r, theta)

        # Calculate polar image values - non-vectorized version
        self.pimage = numpy.empty(radial_bins, angular_bins)
        for r in radial_bins:
            R = (r + 0.5) * radial_bin_width;
            for t in theta_bins:
                theta = (t + 0.5) * theta_bin_width
                x = R * sin(theta)
                y = R * cos(theta)
                self.pimage[r, t] = interp.ev(x, y)
开发者ID:andersas,项目名称:vmiutils,代码行数:59,代码来源:image2.py

示例9: Model2a

def Model2a():
    """
    A version of Model3 where the activation functions are generated
    using a different numpy function. For exploratory reasons only.
    """
    m2a=Model2()
    sn = m2a.GetGroupByName("SN")
    sp = m2a.GetGroupByName("SP")
    sn.SetActivationFunction(np.frompyfunc(lambda x: neural.STanh_plus(x, gain=2)), 1,1)
    sp.SetActivationFunction(np.frompyfunc(lambda x: neural.STanh_plus(x, gain=2)), 1,1) 
开发者ID:gardoma,项目名称:Spyne,代码行数:10,代码来源:model.py

示例10: redraw

    def redraw(self, e = None):
        if ((self.idx_x < 0 and len(self.idx_x_arr) == 0) or
             (self.idx_y < 0 and len(self.idx_y_arr) == 0) or
             self._xdata == [] or
             self._ydata == []):
            return
        #
        if len(self.idx_x_arr) > 0:
            print 'x: summation for', self.idx_x_arr
            xarray = np.array(self._xdata)[:, self.idx_x_arr].sum(1)
        else:
            xarray = np.array(self._xdata)[:, self.idx_x]

        if len(self.idx_y_arr) > 0:
            print 'y: summation for', self.idx_y_arr
            yarray = np.array(self._ydata)[:, self.idx_y_arr].sum(1)

#            print 'yarray', yarray
#            yarray_arr = array( self._ydata )[:, self.idx_y_arr]
#            sym_weigth_arr = 2. * ones_like( yarray_arr[1] )
#            sym_weigth_arr[0] = 4.
#            print 'yarray_arr', yarray_arr
#            print 'sym_weigth_arr', sym_weigth_arr
#            yarray = dot( yarray_arr, sym_weigth_arr )
#            print 'yarray', yarray


        else:
            yarray = np.array(self._ydata)[:, self.idx_y]

        if self.transform_x:
            def transform_x_fn(x):
                '''makes a callable function out of the Str-attribute
                "transform_x". The vectorised version of this function is 
                then used to transform the values in "xarray". Note that
                the function defined in "transform_x" must be defined in
                terms of a lower case variable "x".
                '''
                return eval(self.transform_x)
            xarray = np.frompyfunc(transform_x_fn, 1, 1)(xarray)

        if self.transform_y:
            def transform_y_fn(y):
                '''makes a callable function out of the Str-attribute
                "transform_y". The vectorised version of this function is 
                then used to transform the values in "yarray". Note that
                the function defined in "transform_y" must be defined in
                terms of a lower case variable "y".
                '''
                return eval(self.transform_y)
            yarray = np.frompyfunc(transform_y_fn, 1, 1)(yarray)

        self.trace.xdata = np.array(xarray)
        self.trace.ydata = np.array(yarray)
        self.trace.data_changed = True
开发者ID:sarosh-quraishi,项目名称:simvisage,代码行数:55,代码来源:rt_dof.py

示例11: _refresh_fired

 def _refresh_fired(self):
     xdata = linspace(0,10,10)
     fneval1 = frompyfunc( lambda x: eval( self.expression1 ), 1, 1 )
     fneval2 = frompyfunc( lambda x: eval( self.expression2 ), 1, 1 )
     fneval3 = frompyfunc( lambda x: eval( self.expression3 ), 1, 1 )
     y1 = fneval1( xdata )
     y2 = fneval2( xdata )
     y3 = fneval3( xdata )
     ydata = column_stack((y1,y2,y3))
     self.mfn.set( xdata = xdata, ydata = ydata )
     self.mfn.data_changed = True
开发者ID:axelvonderheide,项目名称:scratch,代码行数:11,代码来源:mfn_multiline_example.py

示例12: __init__

 def __init__(self, mu, alpha):
     self.map_pdf = {}
     self.map_logpdf = {}
     self.bins = []
     mu = float(mu)
     
     self.alpha = alpha
     self.mu = mu
     
     self.nbin = np.frompyfunc(self._get_value, 3, 1)
     self.nbin_log = np.frompyfunc(self._get_value_log, 3, 1)
开发者ID:jovesus,项目名称:reg-gen,代码行数:11,代码来源:neg_bin.py

示例13: _get_values

    def _get_values(self):
        l_rho = self.l_rho
        n_points = self.n_points
        gl_b = self._get_gbundle_props()[0]
        gmu_b = self._get_gbundle_props()[1]
        m_f = self.m_f
        mu_r = self.mu_r
        l_r = self.l_r

        # for Gaussian bundle strength distribution 
        if self.l_plot <= gl_b:
            gl_arr = logspace( log( self.min_plot_length,10 ), log(gl_b,10), n_points )
            gstrength_arr = self.fl(gl_arr)/self.fl(self.l_r)*self.mu_r
        elif self.l_plot > gl_b:
            gl_1 = logspace( log( self.min_plot_length,10), log(gl_b,10), n_points )
            gl_2 = logspace( log( gl_b, 10 ), log( self.l_plot, 10 ), n_points )
            gl_arr = hstack( (gl_1, gl_2) )
            gstrength_1 = self.fl( gl_1 ) / self.fl( self.l_r ) * self.mu_r
            gstrength_22 = frompyfunc( self._get_gstrength, 1, 1 )
            gstrength_2 = array( gstrength_22( gl_2 ), dtype = 'float64' )
            gstrength_arr = hstack( ( gstrength_1, gstrength_2 ) )
        # Mirek's mean approximation
            strength_22 = frompyfunc( self.mean_approx, 1, 3 )
            strength_2 = array( strength_22( gl_2 )[0], dtype = 'float64' )
            mean_gumb = array( strength_22( gl_2 )[1], dtype = 'float64' )
            med_gumb = array( strength_22( gl_2 )[2], dtype = 'float64' )

        #asymptotes for the first two branches
        if self.l_plot <= l_rho:
            al_arr = array([self.min_plot_length, self.l_plot])
            astrength_arr = array([mu_r / self.fl(l_r), mu_r / self.fl(l_r)])
        elif l_rho < self.l_plot:
            al_arr = array([self.min_plot_length, l_rho, 10. * gl_b])
            astrength_1 = mu_r / self.fl(l_r)
            astrength_2 = (l_rho/al_arr[2])**(1/m_f) * astrength_1
            astrength_arr = hstack((astrength_1,astrength_1,astrength_2))
        
        # left asymptote
        self.mu_sigma_0 = astrength_arr[0]
            
        # standard deviation for the first branch = before fragmentation
        if self.l_plot <= gl_b:
            stl_arr = logspace( log( self.min_plot_length,10) , log(self.l_plot,10) , 
                                n_points / 2. )
            stdev_arr_plus  = self.fl( stl_arr ) / self.fl( l_r ) * mu_r * (1 + self.cov)
            stdev_arr_minus = self.fl( stl_arr ) / self.fl( l_r ) * mu_r * (1 - self.cov)
        else:
            stl_arr = logspace( log( self.min_plot_length,10), log(gl_b,10), n_points)
            stdev_arr_plus = self.fl( stl_arr )/self.fl( l_r ) * mu_r * (1 + self.cov)
            stdev_arr_minus = self.fl( stl_arr )/self.fl( l_r ) * mu_r * (1 - self.cov)        
        
        return gl_arr, al_arr, gstrength_arr, astrength_arr,\
               stl_arr, stdev_arr_plus, stdev_arr_minus, gl_2,\
               strength_2, mean_gumb, med_gumb
开发者ID:axelvonderheide,项目名称:scratch,代码行数:54,代码来源:yse.py

示例14: add_dates

 def add_dates(df):
     fun_em = np.frompyfunc(get_date_em, 2, 1)
     fun_lig = np.frompyfunc(get_date_lig, 2, 1)
     df['date_emergence_leaf'] = fun_em(df['num_leaf_bottom'], df['fnl'])
     df['date_ligulation_leaf'] = fun_lig(df['num_leaf_bottom'], df['fnl'])
     if force_mean_fnl==False:
         df['date_emergence_flag_leaf'] = map(lambda fnl: hs_fit.TTemleaf(fnl, nff=fnl), df['fnl'])
         df['date_ligulation_flag_leaf'] = map(lambda fnl: hs_fit.TTligleaf(fnl, nff=fnl), df['fnl'])
     else:
         df['date_emergence_flag_leaf'] = hs_fit.TTemleaf(hs_fit.mean_nff, nff=None)[0]
         df['date_ligulation_flag_leaf'] = hs_fit.TTligleaf(hs_fit.mean_nff, nff=None)[0]
     return df
开发者ID:ggarin,项目名称:alep,代码行数:12,代码来源:simulation_tools.py

示例15: _get_mfn_plot

 def _get_mfn_plot(self):
     n_points = 100
     sigma_max = self.sigma_fu * self.rho
     
     sigma_arr = linspace( 0, sigma_max, n_points )
     
     get_epsilon_f = frompyfunc( lambda sigma: sigma / self.E_f, 1, 1 ) 
     epsilon_f_arr  = get_epsilon_f( sigma_arr )
     
     get_epsilon_c = frompyfunc( self._get_epsilon_c, 1, 1 )
     epsilon_c_arr = get_epsilon_c( sigma_arr )
     
     return MFnLineArray( xdata = epsilon_c_arr, ydata = sigma_arr )
开发者ID:axelvonderheide,项目名称:scratch,代码行数:13,代码来源:scm.py


注:本文中的numpy.frompyfunc函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。