当前位置: 首页>>代码示例>>Python>>正文


Python numpy.float64函数代码示例

本文整理汇总了Python中numpy.float64函数的典型用法代码示例。如果您正苦于以下问题:Python float64函数的具体用法?Python float64怎么用?Python float64使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了float64函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_init

    def test_init(self):
        import numpy as np
        import math
        import sys

        assert np.intp() == np.intp(0)
        assert np.intp("123") == np.intp(123)
        raises(TypeError, np.intp, None)
        assert np.float64() == np.float64(0)
        assert math.isnan(np.float64(None))
        assert np.bool_() == np.bool_(False)
        assert np.bool_("abc") == np.bool_(True)
        assert np.bool_(None) == np.bool_(False)
        assert np.complex_() == np.complex_(0)
        # raises(TypeError, np.complex_, '1+2j')
        assert math.isnan(np.complex_(None))
        for c in ["i", "I", "l", "L", "q", "Q"]:
            assert np.dtype(c).type().dtype.char == c
        for c in ["l", "q"]:
            assert np.dtype(c).type(sys.maxint) == sys.maxint
        for c in ["L", "Q"]:
            assert np.dtype(c).type(sys.maxint + 42) == sys.maxint + 42
        assert np.float32(np.array([True, False])).dtype == np.float32
        assert type(np.float32(np.array([True]))) is np.ndarray
        assert type(np.float32(1.0)) is np.float32
        a = np.array([True, False])
        assert np.bool_(a) is a
开发者ID:GaussDing,项目名称:pypy,代码行数:27,代码来源:test_scalar.py

示例2: do_rangecheck

def do_rangecheck(cf,ds,section='',series='',code=2):
    '''Applies a range check to data series listed in the control file.  Data values that
       are less than the lower limit or greater than the upper limit are replaced with
       c.missing_value and the corresponding QC flag element is set to 2.'''
    if 'RangeCheck' not in cf[section][series].keys(): return
    if 'Lower' in cf[section][series]['RangeCheck'].keys():
        lwr = numpy.array(eval(cf[section][series]['RangeCheck']['Lower']))
        valid_lower = numpy.min(lwr)
        lwr = lwr[ds.series['Month']['Data']-1]
        index = numpy.where((abs(ds.series[series]['Data']-numpy.float64(c.missing_value))>c.eps)&
                                (ds.series[series]['Data']<lwr))
        ds.series[series]['Data'][index] = numpy.float64(c.missing_value)
        ds.series[series]['Flag'][index] = numpy.int32(code)
        ds.series[series]['Attr']['rangecheck_lower'] = cf[section][series]['RangeCheck']['Lower']
    if 'Upper' in cf[section][series]['RangeCheck'].keys():
        upr = numpy.array(eval(cf[section][series]['RangeCheck']['Upper']))
        valid_upper = numpy.min(upr)
        upr = upr[ds.series['Month']['Data']-1]
        index = numpy.where((abs(ds.series[series]['Data']-numpy.float64(c.missing_value))>c.eps)&
                                (ds.series[series]['Data']>upr))
        ds.series[series]['Data'][index] = numpy.float64(c.missing_value)
        ds.series[series]['Flag'][index] = numpy.int32(code)
        ds.series[series]['Attr']['rangecheck_upper'] = cf[section][series]['RangeCheck']['Upper']
        ds.series[series]['Attr']['valid_range'] = str(valid_lower)+','+str(valid_upper)
    if 'RangeCheck' not in ds.globalattributes['Functions']:
        ds.globalattributes['Functions'] = ds.globalattributes['Functions']+',RangeCheck'
开发者ID:OzFlux,项目名称:OzFluxQC,代码行数:26,代码来源:qcck.py

示例3: calc_pca

def calc_pca(feature):
    # Filter out super high numbers due to some instability in the network
    feature[feature>5] = 5
    feature[feature<-5] = -5
    #### Missing an image guided filter with the image as input
    ##
    ##########
    # change to double precision
    feature = np.float64(feature)
    # retrieve size of feature array
    shape = feature.shape
    [h, w, d] = feature.shape
    # resize to a two-dimensional array
    feature = np.reshape(feature, (h*w,d))
    # calculate average of each column
    featmean = np.average(feature,0)
    onearray = np.ones((h*w,1))
    featmeanarray = np.multiply(np.ones((h*w,1)),featmean)
    feature = np.subtract(feature,featmeanarray)
    feature_transpose = np.transpose(feature)
    cover = np.dot(feature_transpose, feature)
    # get largest eigenvectors of the array
    val,vecs = eigs(cover, k=3, which='LI')
    pcafeature = np.dot(feature, vecs)
    pcafeature = np.reshape(pcafeature,(h,w,3))
    pcafeature = np.float64(pcafeature)
    return pcafeature
开发者ID:ml4a,项目名称:ml4a-guides,代码行数:27,代码来源:sss_processing.py

示例4: eaxis

def eaxis(y, uid, camname, hdf5_data, E0=20.35, etay=0, etapy=0):
    logger.log(level=loggerlevel, msg='Getting energy axis...')

    # eaxis     = E200.eaxis(camname=camname, y=y, res=res, E0=20.35, etay=0, etapy=0, ymotor=ymotor)
    imgstr = hdf5_data['raw']['images'][str(camname)]
    res    = np.float64(imgstr['RESOLUTION'][0, 0])
    res    = res*np.float64(1.0e-6)

    logger.log(level=loggerlevel, msg='Camera detected: {}'.format(camname))
    if camname == 'ELANEX':
        ymotor = hdf5_data['raw']['scalars']['XPS_LI20_DWFA_M5']['dat']
        ymotor = mt.derefdataset(ymotor, hdf5_data.file)
        ymotor = ymotor[0]*1e-3
        logger.log(level=loggerlevel, msg='Original ymotor is: {}'.format(ymotor))

        raw_rf     = hdf5_data['raw']
        scalars_rf = raw_rf['scalars']
        setQS_str  = scalars_rf['step_value']
        setQS_dat  = E200.E200_api_getdat(setQS_str, uid).dat[0]
        setQS      = mt.hardcode.setQS(setQS_dat)

        logger.log(level=loggerlevel, msg='Eaxis''s setQS is: {}'.format(setQS_dat))

        ymotor = setQS.elanex_y_motor()*1e-3
        logger.log(level=loggerlevel, msg='Reconstructed ymotor is: {ymotor}'.format(ymotor=ymotor))

        return eaxis_ELANEX(y=y, res=res, etay=etay, etapy=etapy, ymotor=ymotor)

    elif camname == 'CMOS_FAR':
        return eaxis_CMOS_far(y=y, res=res, E0=E0, etay=etay, etapy=etapy)

    else:
        msg = 'No energy axis available for camera: {}'.format(camname)
        logger.log(level=loggerlevel, msg=msg)
        raise NotImplementedError(msg)
开发者ID:joelfrederico,项目名称:E200,代码行数:35,代码来源:eaxis.py

示例5: _combine_match_index

    def _combine_match_index(self, other, func, level=None, fill_value=None):
        new_data = {}

        if fill_value is not None:
            raise NotImplementedError
        if level is not None:
            raise NotImplementedError

        new_index = self.index.union(other.index)
        this = self
        if self.index is not new_index:
            this = self.reindex(new_index)

        if other.index is not new_index:
            other = other.reindex(new_index)

        for col, series in compat.iteritems(this):
            new_data[col] = func(series.values, other.values)

        # fill_value is a function of our operator
        if isnull(other.fill_value) or isnull(self.default_fill_value):
            fill_value = np.nan
        else:
            fill_value = func(np.float64(self.default_fill_value),
                              np.float64(other.fill_value))

        return self._constructor(new_data,
                                 index=new_index,
                                 columns=self.columns,
                                 default_fill_value=fill_value,
                                 fill_value=self.default_fill_value).__finalize__(self)
开发者ID:amirneto,项目名称:pandas,代码行数:31,代码来源:frame.py

示例6: testMulArray

    def testMulArray(self):
        from numpy import arange, round
        a = arange(0, 60, dtype = 'd').reshape(3,4,5) + .3
        r1 = self.rxns['NTRplOH']
        r2 = r1 * a

        for spcn in "NTR OH".split():
            spc = self.spcs[spcn]
            self.assertTrue((r2[spc] == -a).all())

        for spcn in "HNO3 HO2".split():
            spc = self.spcs[spcn]
            self.assertTrue((r2[spc] == a).all())

        for spcn in "FORM ALD2 ALDX".split():
            spc = self.spcs[spcn]
            self.assertTrue((r2[spc] == (a * float64(.33))).all())

        for spcn in ["ALD"]:
            spc = self.spcs[spcn]
            # Value is not exact because of addition
            self.assertTrue((round(r2[spc], decimals = 8) == round(a * float64(.99), decimals = 8)).all())

        for spcn in ["PAR"]:
            spc = self.spcs[spcn]
            self.assertTrue((r2[spc] == (-a * .66)).all())
开发者ID:envhyf,项目名称:permm,代码行数:26,代码来源:Reaction.py

示例7: loadModel

    def loadModel(self):
        f = open(self.modelPath)
        list = f.readlines()
        self.vocabSize = int(list[0].strip())
        self.topicK = int(list[1].strip())
        # self.alpha = np.asarray( [float(list[2].strip())] * self.topicK )
        # self.eta = float(list[3].strip())
        self.topicMatrix = np.zeros((self.topicK, self.vocabSize))
        self.wordMatrix = np.zeros((self.vocabSize, self.topicK))
        j = -1
        location = 0
        for i in range(len(list)):
            if i < 2:
                continue
            if "#TOPIC#" in list[i]:
                j = j + 1
                continue
            l = list[i].split("\t")
            if self.index.has_key(l[0].strip()):
                self.topicMatrix[j][self.index[l[0].strip()]] = np.float64(l[1].strip())
            else:
                self.index[l[0].strip()] = location
                location = location + 1
                self.topicMatrix[j][self.index[l[0].strip()]] = np.float64(l[1].strip())
        self.wordMatrix = np.transpose(self.topicMatrix)
        self.indexList = sorted(self.index.iteritems(), key=lambda d: d[1])

        self.eta = 1.0 / 200
        self.alpha = np.asarray([1.0 / self.topicK for i in xrange(self.topicK)])
        self.minimum_probability = 2.0 / self.topicK
        self.stats = self.topicMatrix
        self.expElogbeta = np.exp(dirichlet_expectation(self.eta + self.stats))
开发者ID:everal,项目名称:sparkLda,代码行数:32,代码来源:lda.py

示例8: test_maybe_convert_scalar

    def test_maybe_convert_scalar(self):

        # pass thru
        result = maybe_convert_scalar('x')
        assert result == 'x'
        result = maybe_convert_scalar(np.array([1]))
        assert result == np.array([1])

        # leave scalar dtype
        result = maybe_convert_scalar(np.int64(1))
        assert result == np.int64(1)
        result = maybe_convert_scalar(np.int32(1))
        assert result == np.int32(1)
        result = maybe_convert_scalar(np.float32(1))
        assert result == np.float32(1)
        result = maybe_convert_scalar(np.int64(1))
        assert result == np.float64(1)

        # coerce
        result = maybe_convert_scalar(1)
        assert result == np.int64(1)
        result = maybe_convert_scalar(1.0)
        assert result == np.float64(1)
        result = maybe_convert_scalar(Timestamp('20130101'))
        assert result == Timestamp('20130101').value
        result = maybe_convert_scalar(datetime(2013, 1, 1))
        assert result == Timestamp('20130101').value
        result = maybe_convert_scalar(Timedelta('1 day 1 min'))
        assert result == Timedelta('1 day 1 min').value
开发者ID:BobMcFry,项目名称:pandas,代码行数:29,代码来源:test_cast.py

示例9: imageGradientY

def imageGradientY(image):
    """ This function differentiates an image in the Y direction.

    Note: See lectures 02-06 (Differentiating an image in X and Y) for a good
    explanation of how to perform this operation.

    The Y direction means that you are subtracting rows:
    der. F(x, y) = F(x, y+1) - F(x, y)
    This corresponds to image[r,c] = image[r+1,c] - image[r,c]

    You should compute the absolute value of the differences in order to avoid
    setting a pixel to a negative value which would not make sense.

    We want you to iterate the image to complete this function. You may NOT use
    any functions that automatically do this for you.

    Args:
        image (numpy.ndarray): A grayscale image represented in a numpy array.

    Returns:
        output (numpy.ndarray): The image gradient in the Y direction. The shape
                                of the output array should have a height that is
                                one less than the original since no calculation
                                can be done once the last row is reached.
    """
    # WRITE YOUR CODE HERE.
    shift1 = np.float64(np.roll(image,-1,axis=0))
    
    diff = np.uint8(np.absolute(np.float64(image) - shift1))[0:-1,:]
    
    return diff
开发者ID:fundsan,项目名称:computervision,代码行数:31,代码来源:assignment4.py

示例10: get_field_rotation_BB_integral

def get_field_rotation_BB_integral(lsamp, clcurl, cl_E_unlensed_sp, lmax=None, lsamp_out=None, acc=1, raw_cl=False):
    CurlSp = InterpolatedUnivariateSpline(lsamp, clcurl)
    lmax = lmax or lsamp[-1]
    if lsamp_out is None: lsamp_out = np.array([L for L in lsamp if L <= lmax // 2])
    Bcurl = np.zeros(lsamp_out.shape)

    for i, ll in enumerate(lsamp_out):
        l = np.float64(ll)
        for llp in range(10, lmax):
            lp = np.float64(llp)
            if abs(ll - llp) > 200 and lp > 200:
                nphi = 2 * int(min(lp / 10 * acc, 200)) + 1
            elif ll > 2000:
                nphi = 2 * int(lp / 10 * acc) + 1
            else:
                nphi = 2 * int(lp) + 1
            dphi = 2 * np.pi / nphi
            phi = np.linspace(dphi, (nphi - 1) / 2 * dphi, (nphi - 1) // 2)
            w = 2 * np.ones(phi.size)
            cosphi = np.cos(phi)
            sinphi = np.sin(phi)
            sin2phi = np.sin(2 * phi)
            lpp = np.sqrt(lp ** 2 + l ** 2 - 2 * cosphi * l * lp)
            w[lpp < 2] = 0
            w[lpp > lmax] = 0
            curls = CurlSp(lpp)
            dCEs = cl_E_unlensed_sp(lp) * lp * dphi
            crossterm = sinphi * l * lp / lpp ** 2
            Bcurl[i] += np.dot(w, curls * (crossterm * sin2phi) ** 2) * dCEs

    Bcurl *= 4 / (2 * np.pi) ** 2
    if not raw_cl: Bcurl *= lsamp_out * (lsamp_out + 1) / (2 * np.pi)
    return lsamp_out, Bcurl
开发者ID:cmbant,项目名称:CAMB,代码行数:33,代码来源:postborn.py

示例11: test_maybe_convert_scalar

    def test_maybe_convert_scalar(self):

        # pass thru
        result = com._maybe_convert_scalar('x')
        self.assertEqual(result, 'x')
        result = com._maybe_convert_scalar(np.array([1]))
        self.assertEqual(result, np.array([1]))

        # leave scalar dtype
        result = com._maybe_convert_scalar(np.int64(1))
        self.assertEqual(result, np.int64(1))
        result = com._maybe_convert_scalar(np.int32(1))
        self.assertEqual(result, np.int32(1))
        result = com._maybe_convert_scalar(np.float32(1))
        self.assertEqual(result, np.float32(1))
        result = com._maybe_convert_scalar(np.int64(1))
        self.assertEqual(result, np.float64(1))

        # coerce
        result = com._maybe_convert_scalar(1)
        self.assertEqual(result, np.int64(1))
        result = com._maybe_convert_scalar(1.0)
        self.assertEqual(result, np.float64(1))
        result = com._maybe_convert_scalar(pd.Timestamp('20130101'))
        self.assertEqual(result, pd.Timestamp('20130101').value)
        result = com._maybe_convert_scalar(datetime(2013, 1, 1))
        self.assertEqual(result, pd.Timestamp('20130101').value)
        result = com._maybe_convert_scalar(pd.Timedelta('1 day 1 min'))
        self.assertEqual(result, pd.Timedelta('1 day 1 min').value)
开发者ID:DangDangSister,项目名称:pandas,代码行数:29,代码来源:test_common.py

示例12: test_get_dimensions

def test_get_dimensions():
    '''
    Test various ways of getting/comparing the dimensions of a quantity.
    '''
    q = 500 * ms
    assert get_dimensions(q) is get_or_create_dimension(q.dimensions._dims)
    assert get_dimensions(q) is q.dimensions
    assert q.has_same_dimensions(3 * second)
    dims = q.dimensions
    assert_equal(dims.get_dimension('time'), 1.)
    assert_equal(dims.get_dimension('length'), 0)
    
    assert get_dimensions(5) is DIMENSIONLESS
    assert get_dimensions(5.0) is DIMENSIONLESS
    assert get_dimensions(np.array(5, dtype=np.int)) is DIMENSIONLESS
    assert get_dimensions(np.array(5.0)) is DIMENSIONLESS
    assert get_dimensions(np.float32(5.0)) is DIMENSIONLESS
    assert get_dimensions(np.float64(5.0)) is DIMENSIONLESS
    assert is_scalar_type(5)
    assert is_scalar_type(5.0)
    assert is_scalar_type(np.array(5, dtype=np.int))
    assert is_scalar_type(np.array(5.0))
    assert is_scalar_type(np.float32(5.0))
    assert is_scalar_type(np.float64(5.0))
    assert_raises(TypeError, lambda: get_dimensions('a string'))
    # wrong number of indices
    assert_raises(TypeError, lambda: get_or_create_dimension([1, 2, 3, 4, 5, 6]))
    # not a sequence
    assert_raises(TypeError, lambda: get_or_create_dimension(42))
开发者ID:brian-team,项目名称:brian2numba,代码行数:29,代码来源:test_units.py

示例13: _get_op_result_fill_value

    def _get_op_result_fill_value(self, other, func):
        own_default = self.default_fill_value

        if isinstance(other, DataFrame):
            # i.e. called from _combine_frame

            other_default = getattr(other, 'default_fill_value', np.nan)

            # if the fill values are the same use them? or use a valid one
            if own_default == other_default:
                # TOOD: won't this evaluate as False if both are np.nan?
                fill_value = own_default
            elif np.isnan(own_default) and not np.isnan(other_default):
                fill_value = other_default
            elif not np.isnan(own_default) and np.isnan(other_default):
                fill_value = own_default
            else:
                fill_value = None

        elif isinstance(other, SparseSeries):
            # i.e. called from _combine_match_index

            # fill_value is a function of our operator
            if isna(other.fill_value) or isna(own_default):
                fill_value = np.nan
            else:
                fill_value = func(np.float64(own_default),
                                  np.float64(other.fill_value))

        else:
            raise NotImplementedError(type(other))

        return fill_value
开发者ID:clham,项目名称:pandas,代码行数:33,代码来源:frame.py

示例14: read_as_sigmas

def read_as_sigmas(options, infiles):
    """Read overdispersion parameters for allele-specific test
    (Beta-Binomial). Expect one for each individual."""

    if (options.as_disp):
        disp_file = open(options.as_disp)
        line = disp_file.readline()
        as_sigmas = []
        while line:
            val = np.float64(line.strip())
            if val < 0.0 or val > 1.0:
                raise ValueError("expected as_sigma values to be "
                                 " in range 0.0-1.0, but got %g" % 
                                 val)
            as_sigmas.append(np.float64(line.strip()))
            line = disp_file.readline()
            
        disp_file.close()

        if len(as_sigmas) != len(infiles):
            raise ValueError("expected %d values in as_disp file "
                             "(one for each input file) but got "
                             "%d" % (len(infiles), len(as_sigmas)))
        
    else:
        as_sigmas = [0.001] * len(infiles)

    return as_sigmas
开发者ID:hobrien,项目名称:WASP,代码行数:28,代码来源:combined_test.py

示例15: Provisional

 def Provisional(self,N,provis,unknowns):    
     j=0    
     finalX=Points('New Provisional Points')
     orientations={}
     for i in unknowns:
         name= i[0:-2]
         variable = i[-1]
         if variable=="o":
             orientations[name]= float64(N[j])
             j+=1
             continue
         x=provis[name].x
         y=provis[name].y
         h=provis[name].h
         if not finalX.has_key(name):
             finalX[name]= Point(0,0,0,False,name)
         if variable=="x":
             finalX[name].ChangeVariable(variable,float64(x+N[j]))
             j+=1
             continue
         if variable=="y":
             finalX[name].ChangeVariable(variable,float64(y+N[j]))
             j+=1
             continue
         if variable=="h":
             finalX[name].ChangeVariable(variable,float64(h+N[j]))
             j+=1
             continue
     return finalX
开发者ID:CraigNielsen,项目名称:LeastSquaresGui,代码行数:29,代码来源:leastSqr.py


注:本文中的numpy.float64函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。