当前位置: 首页>>代码示例>>Python>>正文


Python numpy.float32函数代码示例

本文整理汇总了Python中numpy.float32函数的典型用法代码示例。如果您正苦于以下问题:Python float32函数的具体用法?Python float32怎么用?Python float32使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了float32函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_init

    def test_init(self):
        import numpy as np
        import math
        import sys

        assert np.intp() == np.intp(0)
        assert np.intp("123") == np.intp(123)
        raises(TypeError, np.intp, None)
        assert np.float64() == np.float64(0)
        assert math.isnan(np.float64(None))
        assert np.bool_() == np.bool_(False)
        assert np.bool_("abc") == np.bool_(True)
        assert np.bool_(None) == np.bool_(False)
        assert np.complex_() == np.complex_(0)
        # raises(TypeError, np.complex_, '1+2j')
        assert math.isnan(np.complex_(None))
        for c in ["i", "I", "l", "L", "q", "Q"]:
            assert np.dtype(c).type().dtype.char == c
        for c in ["l", "q"]:
            assert np.dtype(c).type(sys.maxint) == sys.maxint
        for c in ["L", "Q"]:
            assert np.dtype(c).type(sys.maxint + 42) == sys.maxint + 42
        assert np.float32(np.array([True, False])).dtype == np.float32
        assert type(np.float32(np.array([True]))) is np.ndarray
        assert type(np.float32(1.0)) is np.float32
        a = np.array([True, False])
        assert np.bool_(a) is a
开发者ID:GaussDing,项目名称:pypy,代码行数:27,代码来源:test_scalar.py

示例2: _init_params

    def _init_params(self):
        # Left weight matrix
        self.W_hh = theano.shared(
            self.init_fn(self.n_hids, self.n_hids, self.sparsity, self.scale, rng=self.rng), name="W_%s" % self.name
        )
        self.params = [self.W_hh]
        # Right weight matrix
        self.U_hh = theano.shared(
            self.init_fn(self.n_hids, self.n_hids, self.sparsity, self.scale, rng=self.rng), name="U_%s" % self.name
        )
        self.params += [self.U_hh]
        # Bias
        self.b_hh = theano.shared(self.bias_fn(self.n_hids, self.bias_scale, self.rng), name="b_%s" % self.name)
        self.params += [self.b_hh]
        # gaters
        # if self.conv_mode == "conv":
        self.GW_hh = theano.shared(numpy.float32(0.01 * self.rng.randn(self.n_hids, 3)), name="GW_%s" % self.name)
        self.params += [self.GW_hh]
        self.GU_hh = theano.shared(numpy.float32(0.01 * self.rng.randn(self.n_hids, 3)), name="GU_%s" % self.name)
        self.params += [self.GU_hh]
        self.Gb_hh = theano.shared(self.bias_fn(3, self.bias_scale, self.rng), name="Gb_%s" % self.name)
        self.params += [self.Gb_hh]

        self.params_grad_scale = [self.grad_scale for x in self.params]
        self.restricted_params = [x for x in self.params]
        if self.weight_noise:
            self.nW_hh = theano.shared(self.W_hh.get_value() * 0, name="noise_" + self.W_hh.name)
            self.nU_hh = theano.shared(self.U_hh.get_value() * 0, name="noise_" + self.U_hh.name)
            self.nb_hh = theano.shared(self.b_hh.get_value() * 0, name="noise_" + self.b_hh.name)
            self.noise_params = [self.nW_hh, self.nU_hh, self.nb_hh]
            self.noise_params_shape_fn = [constant_shape(x.get_value().shape) for x in self.noise_params]
开发者ID:ktho22,项目名称:speech_synthesis,代码行数:31,代码来源:rconv_layers.py

示例3: adadelta

def adadelta(lr, tparams, grads, inp, cost):
    zipped_grads = [theano.shared(p.get_value() * numpy.float32(0.),
                                  name='%s_grad' % k)
                    for k, p in tparams.iteritems()]
    running_up2 = [theano.shared(p.get_value() * numpy.float32(0.),
                                 name='%s_rup2' % k)
                   for k, p in tparams.iteritems()]
    running_grads2 = [theano.shared(p.get_value() * numpy.float32(0.),
                                    name='%s_rgrad2' % k)
                      for k, p in tparams.iteritems()]

    zgup = [(zg, g) for zg, g in zip(zipped_grads, grads)]
    rg2up = [(rg2, 0.95 * rg2 + 0.05 * (g ** 2))
             for rg2, g in zip(running_grads2, grads)]

    f_grad_shared = theano.function(inp, cost, updates=zgup+rg2up,
                                    profile=profile)

    updir = [-tensor.sqrt(ru2 + 1e-6) / tensor.sqrt(rg2 + 1e-6) * zg
             for zg, ru2, rg2 in zip(zipped_grads, running_up2,
                                     running_grads2)]
    ru2up = [(ru2, 0.95 * ru2 + 0.05 * (ud ** 2))
             for ru2, ud in zip(running_up2, updir)]
    param_up = [(p, p + ud) for p, ud in zip(itemlist(tparams), updir)]

    f_update = theano.function([lr], [], updates=ru2up+param_up,
                               on_unused_input='ignore', profile=profile)

    return f_grad_shared, f_update
开发者ID:G-Wang,项目名称:dl4mt-material,代码行数:29,代码来源:nmt.py

示例4: _testReduceSum

  def _testReduceSum(self,
                     expected_result,
                     dtype,
                     test_inputs,
                     rtol=1e-3,
                     atol=1e-4):
    """Tests reduce sum on a list of input arrays.

    For each array in test_inputs, check that performing reduce sum on the array
    produces a value that is close to the expected result.

    Args:
      expected_result: the expected result.
      dtype: the data type of the reduce sum operation.
      test_inputs: a list of input arrays for the reduce sum operation.
      rtol: the relative error.
      atol: the absolute error.
    """

    for test_input in test_inputs:
      with self.test_session() as sess:
        with self.test_scope():
          a = array_ops.placeholder(dtype)
          index = array_ops.placeholder(dtypes.int32)
          out = math_ops.reduce_sum(a, index)
        result = sess.run(out, {
            a: np.array(test_input, dtype=dtype),
            index: [0]
        })
        # Compare the results using float32 type.
        self.assertAllClose(
            np.float32(result),
            np.float32(expected_result),
            rtol=rtol,
            atol=atol)
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:35,代码来源:reduce_ops_test.py

示例5: coolBlack

def coolBlack():
    IMAGE_WEIGHT = 0.5

    image = cv2.imread("G:/Filters/wasim.jpg",0)
    black = cv2.imread("G:/Filters/black5.jpg",0)
    black = cv2.resize(black, image.shape[::-1])

    res1 = cv2.addWeighted(image, IMAGE_WEIGHT, black, 1 - IMAGE_WEIGHT, 1)


    #NORMALIZE IMAGES
    image = np.float32(image)
    black = np.float32(black)

    image /= 255
    black /= 200

    res = image*black

    cv2.imshow("RES", res)
    cv2.waitKey(0)

    fname = "G:/Filtes/temp.jpg"
    cv2.imwrite(fname, res)
    res = cv2.imread(fname, 0)

    cv2.imshow("BLACK", res)
    cv2.waitKey(0)
开发者ID:wasimblogs,项目名称:PhotoFilter,代码行数:28,代码来源:PhotoFilters.py

示例6: affine_skew

def affine_skew(tilt, phi, img, mask=None):
    '''
    affine_skew(tilt, phi, img, mask=None) -> skew_img, skew_mask, Ai

    Ai - is an affine transform matrix from skew_img to img
    '''
    h, w = img.shape[:2]
    if mask is None:
        mask = np.zeros((h, w), np.uint8)
        mask[:] = 255
    A = np.float32([[1, 0, 0], [0, 1, 0]])
    if phi != 0.0:
        phi = np.deg2rad(phi)
        s, c = np.sin(phi), np.cos(phi)
        A = np.float32([[c,-s], [ s, c]])
        corners = [[0, 0], [w, 0], [w, h], [0, h]]
        tcorners = np.int32( np.dot(corners, A.T) )
        x, y, w, h = cv2.boundingRect(tcorners.reshape(1,-1,2))
        A = np.hstack([A, [[-x], [-y]]])
        img = cv2.warpAffine(img, A, (w, h), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REPLICATE)
    if tilt != 1.0:
        s = 0.8*np.sqrt(tilt*tilt-1)
        img = cv2.GaussianBlur(img, (0, 0), sigmaX=s, sigmaY=0.01)
        img = cv2.resize(img, (0, 0), fx=1.0/tilt, fy=1.0, interpolation=cv2.INTER_NEAREST)
        A[0] /= tilt
    if phi != 0.0 or tilt != 1.0:
        h, w = img.shape[:2]
        mask = cv2.warpAffine(mask, A, (w, h), flags=cv2.INTER_NEAREST)
    Ai = cv2.invertAffineTransform(A)
    return img, mask, Ai
开发者ID:hiroponta,项目名称:PythonApplication1,代码行数:30,代码来源:asift.py

示例7: test_maskandscale

def test_maskandscale():
    t = np.linspace(20, 30, 15)
    t[3] = 100
    tm = np.ma.masked_greater(t, 99)
    fname = pjoin(TEST_DATA_PATH, 'example_2.nc')
    with netcdf_file(fname, maskandscale=True) as f:
        Temp = f.variables['Temperature']
        assert_equal(Temp.missing_value, 9999)
        assert_equal(Temp.add_offset, 20)
        assert_equal(Temp.scale_factor, np.float32(0.01))
        found = Temp[:].compressed()
        del Temp  # Remove ref to mmap, so file can be closed.
        expected = np.round(tm.compressed(), 2)
        assert_allclose(found, expected)

    with in_tempdir():
        newfname = 'ms.nc'
        f = netcdf_file(newfname, 'w', maskandscale=True)
        f.createDimension('Temperature', len(tm))
        temp = f.createVariable('Temperature', 'i', ('Temperature',))
        temp.missing_value = 9999
        temp.scale_factor = 0.01
        temp.add_offset = 20
        temp[:] = tm
        f.close()

        with netcdf_file(newfname, maskandscale=True) as f:
            Temp = f.variables['Temperature']
            assert_equal(Temp.missing_value, 9999)
            assert_equal(Temp.add_offset, 20)
            assert_equal(Temp.scale_factor, np.float32(0.01))
            expected = np.round(tm.compressed(), 2)
            found = Temp[:].compressed()
            del Temp
            assert_allclose(found, expected)
开发者ID:ElDeveloper,项目名称:scipy,代码行数:35,代码来源:test_netcdf.py

示例8: ammoniawater

def ammoniawater(allligand,index,bond_dist):

	D = 3.0

	allligandcoods = allligand.positions
	ncoods = np.zeros((1,3), dtype = float)
	ncoods[0,:] = allligandcoods[index,:]
	ncoods = np.float32(ncoods)

	tempdist = MDAnalysis.lib.distances.distance_array(allligandcoods, ncoods)
	A = np.where((tempdist < bond_dist) & (tempdist > 0.1))
	mates = np.ravel_multi_index(A, tempdist.shape)
	nummates = np.size(mates)
	hcoods = np.zeros((3,3), dtype = float)

	i = 0
	for j in mates:
		if allligand[j].type == 'H':
			hcoods[i,:] = allligandcoods[j,:]
			i = i + 1

	hcoods = np.float32(hcoods)
	tempvector = hcoods - ncoods
	vector1 = unitvector(tempvector[0,:])
	vector2 = unitvector(tempvector[1,:])
	vector3 = unitvector(tempvector[2,:])
	watercood = np.zeros((3,3), dtype = float)
	watercood[0,:] = ncoods + (D*vector1)
	watercood[1,:] = ncoods + (D*vector2)
	watercood[2,:] = ncoods + (D*vector3)


	return watercood
开发者ID:gregoryross,项目名称:WaterDock2.0,代码行数:33,代码来源:addwater.py

示例9: secaminewater

def secaminewater(allligand,index,bond_dist):

	D = 3.0

	allligandcoods = allligand.positions
	ncoods = np.zeros((1,3), dtype = float)
	ncoods[0,:] = allligandcoods[index,:]
	ncoods = np.float32(ncoods)

	tempdist = MDAnalysis.lib.distances.distance_array(allligandcoods, ncoods)
	A = np.where((tempdist < bond_dist) & (tempdist > 0.1))
	mates = np.ravel_multi_index(A, tempdist.shape)
	nummates = np.size(mates)
	hcoods = np.zeros((1,3), dtype = float)
	q = 0
	for j in mates:
		if allligand[j].type == 'H':
			hcoods[0,:] = allligandcoods[j,:]
			break

	watercood = np.zeros((1,3), dtype = float)

	hcoods = np.float32(hcoods)
	vector = unitvector(hcoods - ncoods)
	watercood[0,:] = ncoods + (D * vector)

	return watercood
开发者ID:gregoryross,项目名称:WaterDock2.0,代码行数:27,代码来源:addwater.py

示例10: __init__

    def __init__(self, bounds, objectNum):
        self.meas=[]
        self.pred=[]
        self.objectNum = objectNum
        # self.frame = np.zeros((400,400,3), np.uint8) # drawing canvas
        self.mp = np.array((2,1), np.float32) # measurement
        # self.tp = np.zeros((2,1), np.float32) # tracked / prediction
        self.tp = np.array([[np.float32(bounds.center_x)],[np.float32(bounds.center_y)]])
        self.currentPrediction = (bounds.center_x,bounds.center_y)

        # cv2.namedWindow("kalman")
        # cv2.setMouseCallback("kalman",onmouse);
        self.kalman = cv2.KalmanFilter(4,2)
        self.kalman.measurementMatrix = np.array([[1,0,0,0],[0,1,0,0]],np.float32)
        self.kalman.transitionMatrix = np.array([[1,0,1,0],[0,1,0,1],[0,0,1,0],[0,0,0,1]],np.float32)
        self.kalman.processNoiseCov = np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]],np.float32) * .003
        # self.kalman.processNoiseCov = np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]],np.float32) * 0.03

        # APPLY KALMAN
        track_x, track_y = bounds.center_x,bounds.center_y
        self.meas.append( (track_x, track_y) )
        for i in range(100):
            self.mp = np.array([[np.float32(track_x)],[np.float32(track_y)]])
            self.kalman.correct(self.mp)
            self.predict()
开发者ID:Isaac-W,项目名称:CS510_Assignments,代码行数:25,代码来源:SIFT_Detection.py

示例11: child_indices

 def child_indices(node):
     indices[node] = numpy.float32(counter[0])
     counter[0] += 1
     if isinstance(node, LeafNode):
         return [numpy.float32(0), numpy.float32(0)]
     else:
         return [indices[node.left], indices[node.right]]
开发者ID:igul222,项目名称:Marmot,代码行数:7,代码来源:trees.py

示例12: apply

 def apply(self , src , mask_length , tgt):
     """
         viterbi algorithm
     """
     result , updates = theano.scan(
         fn = self.train_step,
         sequences = src,
         outputs_info = [self.A_start, None] ,
         non_sequences = self.A ,
         n_steps = mask_length
     )
     # the score of best path
     best_path_score = result[0][-1].max()
     idx = T.argmax(result[0][-1])
     #backtracking
     res2 , _ = theano.scan(
         fn = lambda dps , idx , idx2 : [dps[idx] , idx],
         sequences = result[1][::-1],
         outputs_info = [idx , idx],
         n_steps = mask_length
     )
     # the path of best score
     best_path = res2[1]
     #if len(best_path) < seq_len:
     #    best_path.extend((seq_len - len(best_path)) * [2])
     # the score of tgt path
     tgt_score = self.decode(src , mask_length , tgt)
     # max_margin
     max_margin = T.sum(T.neq(tgt[:mask_length] , best_path))
     cost = best_path_score + max_margin - tgt_score
     return T.switch(T.lt(cost , T.alloc(numpy.float32(0.)))
                     , T.alloc(numpy.float32(0.))
                     , cost
                     ),best_path
开发者ID:gumaojie,项目名称:cws_theano,代码行数:34,代码来源:models.py

示例13: test_gpuspecifyshape

def test_gpuspecifyshape():
    x = cuda.shared_constructor(numpy.ones(3, dtype='float32'), 'x')
    m = theano.tensor.specify_shape(x + numpy.float32(1), (3,))
    f = theano.function([], updates=[(x, m * numpy.float32(2))],
                        mode=mode_with_gpu)
    l = f.maker.fgraph.toposort()
    assert not numpy.any([isinstance(x.op, cuda.HostFromGpu) for x in l])
开发者ID:Abioy,项目名称:Theano,代码行数:7,代码来源:test_opt.py

示例14: testIFD

def testIFD():

    # test I
    assert packet.pack('I',3) == struct.pack('<ci', b'I', 3)
    assert packet.pack('I',3) != struct.pack('<ci', b'I', 4)

    assert packet.unpack_stream(
        io.BytesIO(struct.pack('<ci', b'I', 3))) == ('I', 3)
    assert packet.unpack_stream(
        io.BytesIO(struct.pack('<ci', b'I', 4))) != ('I', 3)

    # test F
    assert packet.pack('F',3.3) == struct.pack('<cf', b'F', 3.3)
    assert packet.pack('F',3.3) != struct.pack('<cf', b'F', 4.3)

    assert packet.unpack_stream(
        io.BytesIO(struct.pack('<cf', b'F', numpy.float32(3.3)))) == ('F', numpy.float32(3.3))
    assert packet.unpack_stream(
        io.BytesIO(struct.pack('<cf', b'F', 4.3))) != ('F', 3.3)

    # test D
    assert packet.pack('D',3.3) == struct.pack('<cd', b'D', 3.3)
    assert packet.pack('D',3.3) != struct.pack('<cd', b'D', 4.3)

    assert packet.unpack_stream(
        io.BytesIO(struct.pack('<cd', b'D', 3.3))) == ('D', 3.3)
    assert packet.unpack_stream(
        io.BytesIO(struct.pack('<cd', b'D', 4.3))) != ('D', 3.3)
开发者ID:mcdeoliveira,项目名称:beaglebone,代码行数:28,代码来源:test_packet.py

示例15: rmsprop

def rmsprop(lr, tparams, grads, inp, cost):
    zipped_grads = [theano.shared(p.get_value() * numpy.float32(0.),
                                  name='%s_grad' % k)
                    for k, p in tparams.iteritems()]
    running_grads = [theano.shared(p.get_value() * numpy.float32(0.),
                                   name='%s_rgrad' % k)
                     for k, p in tparams.iteritems()]
    running_grads2 = [theano.shared(p.get_value() * numpy.float32(0.),
                                    name='%s_rgrad2' % k)
                      for k, p in tparams.iteritems()]

    zgup = [(zg, g) for zg, g in zip(zipped_grads, grads)]
    rgup = [(rg, 0.95 * rg + 0.05 * g) for rg, g in zip(running_grads, grads)]
    rg2up = [(rg2, 0.95 * rg2 + 0.05 * (g ** 2))
             for rg2, g in zip(running_grads2, grads)]

    f_grad_shared = theano.function(inp, cost, updates=zgup+rgup+rg2up,
                                    profile=profile)

    updir = [theano.shared(p.get_value() * numpy.float32(0.),
                           name='%s_updir' % k)
             for k, p in tparams.iteritems()]
    updir_new = [(ud, 0.9 * ud - 1e-4 * zg / tensor.sqrt(rg2 - rg ** 2 + 1e-4))
                 for ud, zg, rg, rg2 in zip(updir, zipped_grads, running_grads,
                                            running_grads2)]
    param_up = [(p, p + udn[1])
                for p, udn in zip(itemlist(tparams), updir_new)]
    f_update = theano.function([lr], [], updates=updir_new+param_up,
                               on_unused_input='ignore', profile=profile)

    return f_grad_shared, f_update
开发者ID:G-Wang,项目名称:dl4mt-material,代码行数:31,代码来源:nmt.py


注:本文中的numpy.float32函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。