本文整理汇总了Python中numpy.float函数的典型用法代码示例。如果您正苦于以下问题:Python float函数的具体用法?Python float怎么用?Python float使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了float函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: update_batch_cd1
def update_batch_cd1(para, data_v, layer=1):
eta = para['eta']
max_bsize = data_v.shape[0]
if layer == 0: # input layer, otherwise they are binary
data_h, gibbs_v, gibbs_h = sampling_nb(para, data_v)
else:
data_h, gibbs_v, gibbs_h = sampling(para, data_v)
pos_delta_w = np.zeros((para['v_num'], para['h_num']))
neg_delta_w = np.zeros((para['v_num'], para['h_num']))
for i in range(max_bsize):
pos_delta_w += matu.matrix_times(data_v[i], data_h[i])
neg_delta_w += matu.matrix_times(gibbs_v[i], gibbs_h[i])
delta_w_pos = eta * pos_delta_w/np.float(max_bsize)
delta_w_neg = eta * neg_delta_w/np.float(max_bsize)
para['w'] += delta_w_pos
para['w'] -= delta_w_neg
delta_a = data_v - gibbs_v
delta_b = data_h - gibbs_h
delta_a = eta * np.average(delta_a,0)
delta_b = eta * np.average(delta_b,0)
para['a'] += delta_a
para['b'] += delta_b
#print delta_w_pos.max(), delta_w_neg.max()
return para
示例2: fit
def fit(self, X, y):
n_samples = X.shape[0]
n_features = X.shape[1]
n_classes = 2
n_fvalues = 2
if n_samples != len(y):
raise ValueError('Mismatched number of samples.')
nY = np.zeros(n_classes, dtype=np.int)
for i in range(n_samples):
nY[y[i]] += 1
self.pY_ = np.empty(n_classes, dtype=np.float)
for i in range(n_classes):
self.pY_[i] = nY[i] / np.float(n_samples)
nXY = np.zeros((n_features, n_fvalues, n_classes), dtype=np.int)
for i in range(n_samples):
for j in range(n_features):
nXY[j, X[i, j], y[i]] += 1
self.pXgY_ = np.empty((n_features, n_fvalues, n_classes), dtype=np.float)
for j in range(n_features):
for xi in range(n_fvalues):
for yi in range(n_classes):
self.pXgY_[j, xi, yi] = nXY[j, xi, yi] / np.float(nY[yi])
示例3: _compute_pvalue
def _compute_pvalue(obs_val, sim):
"""
Compute the p-value given an observed value of a test statistic
and some simulations of that same test statistic.
Parameters
----------
obs_value : float
The observed value of the test statistic in question
sim: iterable
A list or array of simulated values for the test statistic
Returns
-------
pval : float [0, 1]
The p-value for the test statistic given the simulations.
"""
# cast the simulations as a numpy array
sim = np.array(sim)
# find all simulations that are larger than
# the observed value
ntail = sim[sim > obs_val].shape[0]
# divide by the total number of simulations
pval = np.float(ntail) / np.float(sim.shape[0])
return pval
示例4: getTimeseriesNemData
def getTimeseriesNemData(self, state, startDate, endDate):
# AEMO data is in AEST - GMT + 10
tz = timezone.SydneyTimezone()
startDate = startDate.astimezone(tz)
endDate = endDate.astimezone(tz)
folderPath = "./nemData"
data = np.loadtxt(folderPath+"/"+state+".csv", delimiter=',',dtype='string',skiprows=1, usecols=None, unpack=False)
timeseries = None
for i in np.arange(data.shape[0]):
date = datetime.datetime(year=int(data[i][0]), month = int(data[i][1]), day = int(data[i][2]), hour = int(data[i][3]), minute=int(data[i][4]), tzinfo=timezone.SydneyTimezone())
if date >= startDate and date <= endDate:
timePeriod = np.zeros(shape=(7))
timePeriod[0] = int(data[i][0])
timePeriod[1] = int(data[i][1])
timePeriod[2] = int(data[i][2])
timePeriod[3] = int(data[i][3])
timePeriod[4] = int(data[i][4])
timePeriod[5] = np.float(data[i][5])
timePeriod[6] = np.float(data[i][6])
if timeseries is None:
timeseries = timePeriod
else:
timeseries = np.vstack((timeseries, timePeriod))
return timeseries
示例5: __init__
def __init__(self, coefficients, p1=None, p2=None, p3=None):
"""
Initializes a plane from the 4 coefficients a, b, c and d of ax + by + cz + d = 0
:param coefficients: abcd coefficients of the plane
"""
#Initializes the normal vector
self.normal_vector = np.array([coefficients[0], coefficients[1], coefficients[2]], np.float)
normv = np.linalg.norm(self.normal_vector)
self.normal_vector /= normv
nonzeros = np.argwhere(self.normal_vector != 0.0).flatten()
zeros = list(set(range(3))-set(nonzeros))
if len(nonzeros) == 0:
raise ValueError("Normal vector is equal to 0.0")
if self.normal_vector[nonzeros[0]] < 0.0:
self.normal_vector = -self.normal_vector
dd = -np.float(coefficients[3]) / normv
else:
dd = np.float(coefficients[3]) / normv
self._coefficients = np.array([self.normal_vector[0],
self.normal_vector[1],
self.normal_vector[2],
dd], np.float)
self._crosses_origin = np.isclose(dd, 0.0, atol=1e-7, rtol=0.0)
self.p1 = p1
self.p2 = p2
self.p3 = p3
#Initializes 3 points belonging to the plane (useful for some methods)
if self.p1 is None:
self.init_3points(nonzeros, zeros)
self.vector_to_origin = dd * self.normal_vector
示例6: jaccard
def jaccard(*mhs):
'''
Compute Jaccard similarity measure for multiple of MinHash objects.
'''
if len(mhs) < 2:
raise ValueError("Less than 2 MinHash objects were given")
seed = mhs[0].seed
if any(seed != m.seed for m in mhs):
raise ValueError("Cannot compare MinHash objects with\
different seeds")
num_perm = mhs[0].hashvalues.size
if any(num_perm != m.hashvalues.size for m in mhs):
raise ValueError("Cannot compare MinHash objects with\
different numbers of permutation functions")
if len(mhs) == 2:
m1, m2 = mhs
return np.float(np.count_nonzero(m1.hashvalues == m2.hashvalues)) /\
np.float(m1.hashvalues.size)
# TODO: find a way to compute intersection for more than 2 using numpy
intersection = 0
for i in range(num_perm):
phv = mhs[0].hashvalues[i]
if all(phv == m.hashvalues[i] for m in mhs):
intersection += 1
return float(intersection) / float(num_perm)
示例7: incentive
def incentive(array, weight_factor):
"""Calculate the incentivization factor, for encouraging Tor exit relay
operators in countries with less exit relays to run more nodes.
:param array: A two-dimensional 3xN array of country codes, exit
probabilities, and factors.
:param float weight_factor: Should be winsorized standard deviation of
exit probabilities, or trimmed standard deviation of exit
probabilities.
"""
array_copy = numpy.asarray(array[:,1], dtype=numpy.float)
main_stddev = numpy.float(array_copy.std())
incentivized = list()
for ccname, pexit, _ in array[::]:
ccname = numpy.string_(ccname) ## oh, Python2.x, how i despise you…
pexit = numpy.float(pexit)
weighted = main_stddev - weight_factor + pexit
inverted = 1. / (abs(weighted)**2)
shifted = inverted * 10.
factor = shifted
incentivized.append({'cc': ccname,
'p_exit': pexit,
'incentive_factor': factor})
return incentivized
示例8: define_power_sweep_vec
def define_power_sweep_vec(self, pow_vec, cwfrequency, BW, time, set_time='dwell'):
'''
Define a sweep in power with a power vector.
Input:
pow_vec [dBm] : define the power vector
cwfrequency [GHz]: constant wave frequency of the VNA
time [s]: if set_time==dwell it is a delay for each partial measurement in the segment
if set_time==sweeptime, we define the duration of the sweep in the segment
BW [Hz]: define the Bandwidth
Output:
None
'''
logging.debug(__name__ + ' : making a sweep in power' % ())
#Delete all the remaining segments from previous measurement
self._visainstrument.write('SEGM:DEL:ALL')
if np.float(self._visainstrument.query('SEGM:COUNT?')) != 0:
print 'Error: segments not deleted'
point = len(pow_vec)
for i in np.arange(point):
self.define_segment(i+1, cwfrequency, cwfrequency,1, pow_vec[i],time, BW, set_time )
if np.float(self._visainstrument.query('SEGM:COUNT?')) != point:
print 'Error: not the number of segment wanted'
示例9: find_extrema
def find_extrema():
import numpy as np
extrema_1 = np.float(self.x_initial + (- 2*self.c[0] + (4*self.c[0]**2 - 12*self.b[0]*self.d[0])**.5)/(6*self.d[0]))
extrema_2 = np.float(self.x_initial + (- 2*self.c[0] - (4*self.c[0]**2 - 12*self.b[0]*self.d[0])**.5)/(6*self.d[0]))
extrema_3 = np.float(self.x_break + (- 2*self.c[1] + (4*self.c[1]**2 - 12*self.b[1]*self.d[1])**.5)/(6*self.d[1]))
extrema_4 = np.float(self.x_break + (- 2*self.c[1] - (4*self.c[1]**2 - 12*self.b[1]*self.d[1])**.5)/(6*self.d[1]))
return(extrema_1,extrema_2,extrema_3,extrema_4)
示例10: _percentage_distance
def _percentage_distance(canny_in, canny_out, r):
diamond = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
E_1 = scipy.ndimage.morphology.binary_dilation(canny_in, structure=diamond, iterations=r)
E_2 = scipy.ndimage.morphology.binary_dilation(canny_out, structure=diamond, iterations=r)
return 1.0 - np.float(np.sum(E_1 & E_2))/np.float(np.sum(E_1))
示例11: define_power_sweep
def define_power_sweep(self, startpow, stoppow, steppow, cwfrequency, BW, time, set_time='dwell'):
'''
Make a sweep in power where startpow can be greater than stoppow
Input:
startpow [dBm] : define the power at which begin the sweep
stoppow [dBm]: define the power at which finish the sweep
steppow [dBm]: define the step of the sweep
cwfrequency [GHz]: constant wave frequency of the VNA
time [s]: if set_time==dwell it is a delay for each partial measurement in the segment
if set_time==sweeptime, we define the duration of the sweep in the segment
BW [Hz]: define the Bandwidth
Output:
None
'''
logging.debug(__name__ + ' : making a sweep in power from %s to %s with a step of %s' % (startpow, stoppow, steppow))
#Destroy all the remaining segments from previous measurement
self._visainstrument.write('SEGM:DEL:ALL')
if np.float(self._visainstrument.query('SEGM:COUNT?'))!=0:
print 'Error: segments not deleted'
pow_vec=np.arange(startpow, stoppow + steppow, steppow)
point=len(pow_vec)
for i in np.arange(point):
self.define_segment(i+1, cwfrequency, cwfrequency,1, pow_vec[i],time, BW, set_time )
if np.float(self._visainstrument.query('SEGM:COUNT?'))!=point:
print 'Error: not the number of segment wanted'
示例12: buildMatrixExplicit
def buildMatrixExplicit(ratings): ## Build the matrix in a binary way
u = ratings['userid'].drop_duplicates() ## we extract the userid's of this region
u.index = range(0,len(u)) ## we change the index so it will go from 0 to the number of users
b = ratings['band'].drop_duplicates() ## An array with the names of the bands
b.index = range(0,len(b)) ## We change the index of the array so each band has an unique number
pairs = ratings.loc[:,["userid","band","rating"]] ## For this method we need the userid, and the band. Later on we will count the number of times a band appears for each user profile
pairs.loc[pairs.rating=="Yes",'rating'] = np.float(5.0) ## We change the implicit values
pairs.loc[pairs.rating=="Maybe",'rating'] = np.float(4.0)
pairs['rating'] = pairs['rating'].astype(float) ## We change the column of the ratings to float
g = pairs.groupby(['userid'])
rows = []
cols = []
rat = []
for name, group in g: ## name is the userid by which we group before, group is all the band names and its ratings
### We are going to group each of the user groups by band to calculate the mean ratings for each band
g2 = group.loc[:,['band','rating']].groupby('band')
meanRatings = g2['rating'].mean()
z = list(group['band']) ## A list with the bands that the user have been to. The names can be repeated
d = Counter(z) ## A dictionary with the distinct names of bands and the number of occurences of each one
for band, count in d.iteritems(): ## Eg. band "Arctic monkeys" count = 3
cols.append(b[b==band].index[0]) ## We append the position of the band in the matrix
freq = len(list(c for c in d.itervalues() if c <= count)) ## The number of bands which count <= (current band count)
r = (meanRatings[band] * freq)/len(d) ## We do this in a scale [0,5]
rat.append(r)
userNo = (u[u==name].index[0])### name is the user
rows.extend([userNo]*len(d)) ## We extend with the row position of the user repeated n times where n is the number of columns
result = csr_matrix((map(float,rat),(rows,cols)),shape=(len(u),len(b)))
return(result)
示例13: retick
def retick(ax, axname):
if axname == 'x':
rng = ax.get_xlim()
elif axname == 'y':
rng = ax.get_ylim()
else:
rng = ax.get_zlim()
mn = np.int(np.floor(rng[0]))
mx = np.int(np.ceil(rng[1]))
ticks = []
ticklabels = []
for i in range(mn, mx):
if np.float(i) >= rng[0]:
ticks.append(np.float(i))
ticklabels.append('$10^{' + ("%d" % i) + '}$')
if axname == 'x':
ax.set_xticks(ticks)
ax.set_xticklabels(ticklabels)
elif axname == 'y':
ax.set_yticks(ticks)
ax.set_yticklabels(ticklabels)
else:
ax.set_zticks(ticks)
ax.set_zticklabels(ticklabels)
return
示例14: mkKernel
def mkKernel(ks, sig, th , om, ps, gm):
""" Check the kernel size"""
if not ks%2:
exit(1)
""" Definition of the varibles"""
theta = th
psi = ps
sigma = np.float(sig)
omega = np.float(om)
gamma = gm
"""Creating the kernel size"""
# xs=np.linspace(-1*ks,1*ks/10.,ks)
# ys=np.linspace(-1*ks/10.,1*ks/10.,ks)
xs=np.linspace(-1*ks,1*ks,ks)
ys=np.linspace(-1*ks,1*ks,ks)
"""Creating the kernel"""
x,y = np.meshgrid(xs,ys)
#return np.array( np.exp(-0.5*(x_theta**2+gamma * y_theta**2)/sigma**2)*np.cos(2.*np.pi*x_theta/lmbd + psi),dtype=np.float32)
gabor_kernel = np.array( np.exp(-(x**2 + y**2)/(2*sigma**2) )*np.cos(2.*np.pi*(x*np.cos(theta)+y*np.sin(theta) ) * omega), dtype=np.float32)
return gabor_kernel
""" Return the kernel The sigma signal The sinus wave """
示例15: _compute_rdiff_stats
def _compute_rdiff_stats(self, var1, var2):
"""Compute the relative difference statistics of var1 and var2.
vars_differ must already be set for self."""
if (not self.vars_differ() or len(var1) == 0):
rdiff_max = np.float('nan')
rdiff_maxloc = -1
rdiff_logavg = np.float('nan')
else:
differences = self._compute_diffs(var1, var2) != 0
diff_vals = self._compute_diffs(var1, var2)[differences]
maxvals = np.maximum(np.abs(var1), np.abs(var2))[differences]
rdiff = np.abs(diff_vals) / maxvals.astype(np.float)
rdiff_max = np.max(rdiff)
rdiff_maxloc = self._compute_max_loc(rdiff, differences)
numDiffs = np.sum(differences)
if numDiffs > 0:
# Compute the sum of logs by taking the products of the logands; +1 if the logand is 0
# Then take the log of the result
# Since the log(1) is 0, this does not affect the final sum
rdiff_prod = np.prod(rdiff)
if rdiff_prod != np.float('inf') and rdiff_prod > 0.0:
rdiff_logsum = -math.log10(rdiff_prod)
else:
# We need to use a different (slower, less accurate) method of computing this,
# the product either overflowed or underflowed due to the small exponent
rdiff_logs = np.log10(rdiff)
rdiff_logsum = -np.sum(rdiff_logs)
rdiff_logavg = rdiff_logsum / np.sum(differences)
else:
rdiff_logavg = np.float('nan')
return rdiff_max, rdiff_maxloc, rdiff_logavg