本文整理汇总了Python中numpy.dsplit函数的典型用法代码示例。如果您正苦于以下问题:Python dsplit函数的具体用法?Python dsplit怎么用?Python dsplit使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了dsplit函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: build_rnn_dataset
def build_rnn_dataset(steps):
rnntrain,rnntest=makernnset(steps)
print "trainset.shape, testset.shape =", rnntrain.shape, rnntest.shape
X_train, y_train = np.dsplit(rnntrain,[5])
X_valid, y_valid = np.dsplit(rnntest,[5])
X_train = normalize(X_train)
X_valid = normalize(X_valid)
print 'X_train.shape, y_train.shape =', X_train.shape, y_train.shape
return X_train, y_train, X_valid, y_valid
示例2: generate_rgb_array
def generate_rgb_array(filename):
imageframes = []
if len(filename) == 1:
filename = filename[0]
# reading tif image into memory and turning into numpy array
im = Image.open(filename)
im.load()
imarray = np.array(im)
print np.unique(np.dsplit(imarray,3)[0]),np.unique(np.dsplit(imarray,3)[1]),np.unique(np.dsplit(imarray,3)[2])
return imarray
示例3: cat_trials
def cat_trials(x):
""" Concatenate trials along time axis.
Parameters
----------
x : array_like
Segmented input data of shape [`n`,`m`,`t`], with `n` time samples, `m` signals, and `t` trials.
Returns
-------
out : ndarray
Trials are concatenated along the first (time) axis. Shape of the output is [`n``t`,`m`].
See also
--------
cut_segments : Cut segments from continuous data
Examples
--------
>>> x = np.random.randn(150, 4, 6)
>>> y = cat_trials(x)
>>> y.shape
(900, 4)
"""
x = np.atleast_3d(x)
t = x.shape[2]
return np.squeeze(np.vstack(np.dsplit(x, t)), axis=2)
示例4: median_filter
def median_filter(image, selem=None):
if selem is None:
# default mask is 5x5 square
selem = square(5)
depth = image.shape[2]
return np.dstack(median(channel[...,0], selem)
for channel in np.dsplit(image, depth)) / 255.
示例5: conditional_maximum_correlation_pmf
def conditional_maximum_correlation_pmf(pmf):
"""
Compute the conditional maximum correlation from a 3-dimensional
pmf. The maximum correlation is computed between the first two dimensions
given the third.
Parameters
----------
pmf : np.ndarray
The probability distribution.
Returns
-------
rho_max : float
The conditional maximum correlation.
"""
pXYgZ = pmf / pmf.sum(axis=(0,1), keepdims=True)
pXgZ = pXYgZ.sum(axis=1, keepdims=True)
pYgZ = pXYgZ.sum(axis=0, keepdims=True)
Q = np.where(pmf, pXYgZ / (np.sqrt(pXgZ)*np.sqrt(pYgZ)), 0)
Q[np.isnan(Q)] = 0
rho_max = max([svdvals(np.squeeze(m))[1] for m in np.dsplit(Q, Q.shape[2])])
return rho_max
示例6: fun_add_channels
def fun_add_channels(img, weights):
"""
A functional implementation of the same function
"""
return (reduce(lambda a, b: a+b,
[weight * channel for weight, channel in list(
zip(weights, np.dsplit(img, img.shape[2])))]))[:, :, 0]
示例7: IMT_find_col
def IMT_find_col(imin, col):
# This is the color distance from the reference point
coldist = imin.colorDistance( col )
lolout = Image( npboost( np.squeeze(np.dsplit( coldist.getNumpy(), 3)[0] ) ) )
modim = lolout.stretch(0,20)
openim = m_open(modim,1).binarize()
return IMT_calccentroid(openim)
示例8: main
def main():
# 构造一个数组
a = arange(9).reshape(3,3)
print a
# [[0 1 2]
# [3 4 5]
# [6 7 8]]
# 横向拆分
hs = hsplit(a,3)
print hs
# [
# array([[0],[3],[6]]),
# array([[1],[4],[7]]),
# array([[2], [5], [8]])
# ]
# 纵向拆分
vs = vsplit(a,3)
print vs
# [
# array([[0, 1, 2]]),
# array([[3, 4, 5]]),
# array([[6, 7, 8]])
# ]
# 深向拆分,数组需要为三维数组
b = arange(27).reshape(3,3,3)
ds = dsplit(b,3)
print ds
示例9: surf2CV
def surf2CV(surf, cvImage):
"""
Given a Pygame surface, convert to an OpenCv cvArray format.
Either Ipl image or cvMat.
surf2CV( pygame.Surface src, cv.Image dest )
(From http://facial-expression-recognition.googlecode.com/svn/trunk/code/conversion.py)
( Extracted 2012-Jul-16 22:37EDT by GKF)
"""
from numpy import dsplit, dstack
cv.Set(cvImage, (0,0,0))
arr = pygame.surfarray.pixels3d(surf).transpose(1,0,2) # Reshape to 320x240
r,g,b = dsplit(arr,3)
arr = dstack((b,g,r))
dtype2depth = {
'uint8': cv.IPL_DEPTH_8U,
'int8': cv.IPL_DEPTH_8S,
'uint16': cv.IPL_DEPTH_16U,
'int16': cv.IPL_DEPTH_16S,
'int32': cv.IPL_DEPTH_32S,
'float32': cv.IPL_DEPTH_32F,
'float64': cv.IPL_DEPTH_64F,
}
try:
nChannels = arr.shape[2]
except:
nChannels = 3
try:
cv.SetData(cvImage, arr.tostring(),arr.dtype.itemsize*nChannels*arr.shape[1])
except:
print "Error is: ",
print sys.exc_info()[0]
示例10: multiply_3x3_mat
def multiply_3x3_mat(src, mat):
"""RGBの各ピクセルに対して3x3の行列演算を行う"""
# 正規化用の係数を調査
normalize_val = (2 ** (8 * src.itemsize)) - 1
# 0 .. 1 に正規化して RGB分離
b, g, r = np.dsplit(src / normalize_val, 3)
# 行列計算
ret_r = r * mat[0][0] + g * mat[0][1] + b * mat[0][2]
ret_g = r * mat[1][0] + g * mat[1][1] + b * mat[1][2]
ret_b = r * mat[2][0] + g * mat[2][1] + b * mat[2][2]
# オーバーフロー確認(実は Matrixの係数を調整しているので不要)
ret_r = cv2.min(ret_r, 1.0)
ret_g = cv2.min(ret_g, 1.0)
ret_b = cv2.min(ret_b, 1.0)
# アンダーフロー確認(実は Matrixの係数を調整しているので不要)
ret_r = cv2.max(ret_r, 0.0)
ret_g = cv2.max(ret_g, 0.0)
ret_b = cv2.max(ret_b, 0.0)
# RGB結合
ret_mat = np.dstack( (ret_b, ret_g, ret_r) )
# 0 .. 255 に正規化
ret_mat *= normalize_val
return np.uint8(ret_mat)
示例11: colors_peripheral_vs_central
def colors_peripheral_vs_central(image_roi, attrs={}, debug=False):
image_roi, center = pad_for_rotation(image_roi)
lesion_mask = image_roi[..., 3]
goal = lesion_mask.sum() * 0.7
inner = lesion_mask.copy()
while inner.sum() > goal:
inner = binary_erosion(inner, disk(1))
outer = np.logical_and(lesion_mask, np.logical_not(inner))
if debug:
print """\
=== Colors Peripheral vs Central ===
lesion area: %d
inner goal: %d
inner area: %d
outer area: %d
""" % (lesion_mask.sum(), goal, inner.sum(), outer.sum())
if debug:
plt.subplot(131)
plt.imshow(lesion_mask)
plt.subplot(132)
plt.imshow(inner)
plt.subplot(133)
plt.imshow(outer)
plt.show()
outer = np.nonzero(outer)
inner = np.nonzero(inner)
image_lab = rgb2lab(image_roi[..., :3])
L, a, b = np.dsplit(image_lab, 3)
delta_L = np.mean(L[outer]) - np.mean(L[inner])
delta_a = np.mean(a[outer]) - np.mean(a[inner])
delta_b = np.mean(b[outer]) - np.mean(b[inner])
density_L = (
np.histogram(L[outer], 100, (0.,100.), density=True)[0] *
np.histogram(L[inner], 100, (0.,100.), density=True)[0]
).sum()
density_a = (
np.histogram(a[outer], 254, (-127.,127.), density=True)[0] *
np.histogram(a[inner], 254, (-127.,127.), density=True)[0]
).sum()
density_b = (
np.histogram(b[outer], 254, (-127.,127.), density=True)[0] *
np.histogram(b[inner], 254, (-127.,127.), density=True)[0]
).sum()
attrs.update([
('Colors PvsC mean difference L', delta_L),
('Colors PvsC mean difference a', delta_a),
('Colors PvsC mean difference b', delta_b),
('Colors PvsC density baysian L', density_L),
('Colors PvsC density baysian a', density_a),
('Colors PvsC density baysian b', density_b),
])
示例12: montage
def montage(vol, ncols=None):
"""Returns a 2d image monage given a 3d volume."""
ncols = ncols if ncols else int(np.ceil(np.sqrt(vol.shape[2])))
rows = np.array_split(vol, range(ncols,vol.shape[2],ncols), axis=2)
# ensure the last row is the same size as the others
rows[-1] = np.dstack((rows[-1], np.zeros(rows[-1].shape[0:2] + (rows[0].shape[2]-rows[-1].shape[2],))))
im = np.vstack([np.squeeze(np.hstack(np.dsplit(row, ncols))) for row in rows])
return(im)
示例13: _swaplch
def _swaplch(LCH):
"Reverse the order of an LCH numpy dstack or tuple for analysis."
try: # Numpy array
L, C, H = np.dsplit(LCH, 3)
return np.dstack((H, C, L))
except: # Tuple
L, C, H = LCH
return H, C, L
示例14: alpha_blend
def alpha_blend(image, background):
"Une dos imagenes con opacidad, usando numpy"
image, alpha = np.dsplit(image, np.array([3]))
image = image
alpha = 1 - alpha
resultado = image * alpha + background * (1 - alpha)
return resultado
示例15: rgb_to_hsv
def rgb_to_hsv(img):
h,w,d = img.shape
r, g, b = np.dsplit(img,3)
maxc = img.max(axis=2).reshape(h,w,1)
minc = img.min(axis=2).reshape(h,w,1)
s = (maxc-minc) / maxc
v = maxc
imgc = (maxc-img)/(maxc-minc)
rc, gc, bc = np.dsplit(imgc,3)
h = np.where(maxc==r, bc-gc,
np.where(maxc==g, 2.0+rc-bc,
4.0+gc-rc))
h = (h/6.0) % 1.0
hsv = np.dstack([h,s,v])
v0 = np.dstack([np.zeros_like(h),np.zeros_like(h),v])
mask = minc == maxc
mask = np.dstack([mask,mask,mask])
return np.where(mask, v0, hsv)