本文整理汇总了Python中numpy.degrees函数的典型用法代码示例。如果您正苦于以下问题:Python degrees函数的具体用法?Python degrees怎么用?Python degrees使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了degrees函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_center
def get_center(self):
"""
Return the RA, Dec of the center of the circle bounding
this trixel (RA, Dec both in degrees)
"""
ra, dec = sphericalFromCartesian(self.bounding_circle[0])
return np.degrees(ra), np.degrees(dec)
示例2: star
def star(a,b,c,alpha,beta,gamma):
"Calculate unit cell volume, reciprocal cell volume, reciprocal lattice parameters"
alpha=np.radians(alpha)
beta=np.radians(beta)
gamma=np.radians(gamma)
V=2*a*b*c*\
np.sqrt(np.sin((alpha+beta+gamma)/2)*\
np.sin((-alpha+beta+gamma)/2)*\
np.sin((alpha-beta+gamma)/2)*\
np.sin((alpha+beta-gamma)/2))
Vstar=(2*np.pi)**3/V;
astar=2*np.pi*b*c*np.sin(alpha)/V
bstar=2*np.pi*a*c*np.sin(beta)/V
cstar=2*np.pi*b*a*np.sin(gamma)/V
alphastar=np.arccos((np.cos(beta)*np.cos(gamma)-\
np.cos(alpha))/ \
(np.sin(beta)*np.sin(gamma)))
betastar= np.arccos((np.cos(alpha)*np.cos(gamma)-\
np.cos(beta))/ \
(np.sin(alpha)*np.sin(gamma)))
gammastar=np.arccos((np.cos(alpha)*np.cos(beta)-\
np.cos(gamma))/ \
(np.sin(alpha)*np.sin(beta)))
V=V
alphastar=np.degrees(alphastar)
betastar=np.degrees(betastar)
gammastar=np.degrees(gammastar)
return astar,bstar,cstar,alphastar,betastar,gammastar
示例3: b1950toj2000
def b1950toj2000(ra, dec):
"""
Convert B1950 to J2000 coordinates.
This routine is based on the technique described at
http://www.stargazing.net/kepler/b1950.html
"""
# Convert to radians
ra = np.radians(ra)
dec = np.radians(dec)
# Convert RA, Dec to rectangular coordinates
x = np.cos(ra) * np.cos(dec)
y = np.sin(ra) * np.cos(dec)
z = np.sin(dec)
# Apply the precession matrix
x2 = P1[0, 0] * x + P1[1, 0] * y + P1[2, 0] * z
y2 = P1[0, 1] * x + P1[1, 1] * y + P1[2, 1] * z
z2 = P1[0, 2] * x + P1[1, 2] * y + P1[2, 2] * z
# Convert the new rectangular coordinates back to RA, Dec
ra = np.arctan2(y2, x2)
dec = np.arcsin(z2)
# Convert to degrees
ra = np.degrees(ra)
dec = np.degrees(dec)
# Make sure ra is between 0. and 360.
ra = np.mod(ra, 360.0)
dec = np.mod(dec + 90.0, 180.0) - 90.0
return ra, dec
示例4: lb_to_azalt
def lb_to_azalt(gal_l, gal_b, lat, lon, unixtime=None):
"""
Converts galactic coordiantes to az/alt coordinates. The input
angles are expected to be in degrees.
"""
# Convert degrees to radians
gal_l = _np.radians(gal_l)
gal_b = _np.radians(gal_b)
# Location on unit sphere
theta = _np.pi / 2 - gal_b
phi = gal_l
x = _np.sin(theta) * _np.cos(phi)
y = _np.sin(theta) * _np.sin(phi)
z = _np.cos(theta)
cartesian = _np.array([x, y, z])
# Get the of-date ra/dec to convert to az/alt
radec_cart = _np.dot(matrix_lb_radec(), cartesian)
x, y, z = radec_cart
r = _np.sqrt(x**2 + y**2 + z**2) # should be 1
theta = _np.arccos(z / r)
phi = _np.arctan2(y, x)
ra = _np.degrees(phi)
dec = _np.degrees(_np.pi / 2 - theta)
if ra < 0:
ra += 360.0
ra, dec = get_radec_ofdate(ra, dec, unixtime)
# Convert ra/dec to az/alt (in degrees)
return radec_to_azalt(ra, dec, lat, lon, unixtime)
示例5: _lambet
def _lambet(self):
"""Lower overhead ecliptic longitude and latitude. [deg]"""
from astropy.coordinates import Angle
lam = np.arctan2(self._rot.T[1], self._rot.T[0])
bet = np.arctan2(self._rot.T[2],
np.sqrt(self._rot.T[0]**2 + self._rot.T[1]**2))
return np.degrees(lam), np.degrees(bet)
示例6: test_degrees
def test_degrees(self):
# the following doesn't make much sense in terms of the name of the
# routine, but we check it gives the correct result.
q1 = np.rad2deg(60. * u.degree)
assert_allclose(q1.value, 60.)
assert q1.unit == u.degree
q2 = np.degrees(60. * u.degree)
assert_allclose(q2.value, 60.)
assert q2.unit == u.degree
q3 = np.rad2deg(np.pi * u.radian)
assert_allclose(q3.value, 180.)
assert q3.unit == u.degree
q4 = np.degrees(np.pi * u.radian)
assert_allclose(q4.value, 180.)
assert q4.unit == u.degree
with pytest.raises(TypeError):
np.rad2deg(3. * u.m)
with pytest.raises(TypeError):
np.degrees(3. * u.m)
示例7: waypoints_to_commands
def waypoints_to_commands(coords):
#cmd = [[vx,az,time],etc]
#Convert waypoints to value in stage
lin_vel = 0.2
ang_vel = math.radians(45) #45 deg/s in rad/s
init_ang = 0;
move_ang = [0]
move_dist = [0]
for i in range(len(coords)-1):
p1 = coords[i]
p2 = coords[i+1]
move_ang.append(math.atan2(p2[1]-p1[1],p2[0]-p1[0]))
move_dist.append(math.sqrt((p2[1]-p1[1])**2+(p2[0]-p1[0])**2))
print np.degrees(move_ang)
print len(move_dist)
move_cmd = []
for i in range(len(move_ang)-1):
ang_cmd = (move_ang[i+1]-move_ang[i])
ang_time = ang_cmd/ang_vel
dist_cmd =move_dist[i+1]-move_dist[i]
dist_time = dist_cmd/lin_vel
move_cmd.append([0,np.sign(ang_cmd),math.fabs(ang_time)])
move_cmd.append([np.sign(dist_cmd),0,math.fabs(dist_time)])
print move_cmd
print len(move_cmd)
return move_cmd
示例8: sendSearchRequest
def sendSearchRequest(matches):
ra=list(np.degrees(matches[matches['isinobs']==False]['can_ra']))
dec=list(np.degrees(matches[matches['isinobs']==False]['can_dec']))
bands='[g,r,i,z]'
req='http://desdev3.cosmology.illinois.edu:8000/api?username=lzullo&password=lzu70chips&ra=%s&dec=%s&bands=%s' % (ra,dec,bands)
submit = requests.get(req)
return submit.json()['job']
示例9: draw
def draw(self):
gL.glPushMatrix()
if self.b:
self.draw_rod(self.b)
gL.glTranslatef(0, 0, self.b)
gL.glRotatef(degrees(self.gamma), 0, 0, 1)
if self.d:
gL.glPushMatrix()
gL.glRotatef(90, 0, 1, 0)
self.draw_rod(self.d)
gL.glPopMatrix()
gL.glTranslatef(self.d, 0, 0)
gL.glRotatef(degrees(self.alpha), 1, 0, 0)
if self.r:
self.draw_rod(self.r)
gL.glTranslatef(0, 0, self.r)
gL.glRotatef(degrees(self.theta), 0, 0, 1)
if self.shift:
gL.glPushMatrix()
shift = self.shift * self.length
self.draw_rod(shift)
gL.glTranslatef(0, 0, shift)
self.draw_joint()
gL.glPopMatrix()
else:
self.draw_joint()
for child in self.children:
child.draw()
gL.glPopMatrix()
示例10: GetHealPixRectangles
def GetHealPixRectangles(nside, dbrange, nest):
hpindex = np.arange(hp.nside2npix(nside))
vec_corners = hp.boundaries(nside, hpindex, nest=nest)
vec_corners = np.transpose(vec_corners, (0,2,1))
vec_corners = np.reshape(vec_corners, (vec_corners.shape[0]*vec_corners.shape[1], vec_corners.shape[2]))
theta_corners, phi_corners = hp.vec2ang(vec_corners)
theta_corners = np.reshape(theta_corners, (theta_corners.shape[0]/4, 4))
phi_corners = np.reshape(phi_corners, (phi_corners.shape[0]/4, 4))
ra_corners = np.degrees(phi_corners)
dec_corners = 90.0 - np.degrees(theta_corners)
rainside = ( (ra_corners > dbrange[0]) & (ra_corners < dbrange[1]) )
rakeep = np.sum(rainside, axis=-1)
decinside = ( (dec_corners > dbrange[2]) & (dec_corners < dbrange[3]) )
deckeep = np.sum(decinside, axis=-1)
keep = ( (rakeep > 0) & (deckeep > 0) )
ra_corners, dec_corners, hpindex = Cut(ra_corners, dec_corners, hpindex, cut=keep)
ramin = np.amin(ra_corners, axis=-1)
ramax = np.amax(ra_corners, axis=-1)
decmin = np.amin(dec_corners, axis=-1)
decmax = np.amax(dec_corners, axis=-1)
return ramin, ramax, decmin, decmax, hpindex
示例11: Jacobsen
def Jacobsen(h1, Xm_1, h2, Xm_2):
alp = np.degrees(np.arccos(np.dot(h1, h2) /
(np.linalg.norm(h1) * np.linalg.norm(h2))))
bet = np.degrees(np.arccos(np.dot(Xm_1, Xm_2) /
(np.linalg.norm(Xm_1) * np.linalg.norm(Xm_2))))
if ((alp - bet)**2) > 1:
print('check your indexing!')
a = 3.567 # diamond lattice parameter
# recip lattice par(note this is the mantid convention: no 2 pi)
ast = (2 * np.pi) / a
B = np.array([[ast, 0, 0], [0, ast, 0], [0, 0, ast]])
Xm_g = np.cross(Xm_1, Xm_2)
Xm = np.column_stack([Xm_1, Xm_2, Xm_g])
# Vector Q1 is described in reciprocal space by its coordinate matrix h1
Xa_1 = B.dot(h1)
Xa_2 = B.dot(h2)
Xa_g = np.cross(Xa_1, Xa_2)
Xa = np.column_stack((Xa_1, Xa_2, Xa_g))
R = Xa.dot(np.linalg.inv(Xm))
U = np.linalg.inv(R)
UB = U.dot(B)
return UB
示例12: cone
def cone(plunge, bearing, angle, segments=100):
"""
Calculates the longitude and latitude of the small circle (i.e. a cone)
centered at the given *plunge* and *bearing* with an apical angle of
*angle*, all in degrees.
Parameters
----------
plunge : number or sequence of numbers
The plunge of the center of the cone(s) in degrees. The plunge is
measured in degrees downward from the end of the feature specified by
the bearing.
bearing : number or sequence of numbers
The bearing (azimuth) of the center of the cone(s) in degrees.
angle : number or sequence of numbers
The apical angle (i.e. radius) of the cone(s) in degrees.
segments : int, optional
The number of vertices in the small circle.
Returns
-------
lon, lat : arrays
`num_measurements` x `num_segments` arrays of longitude and latitude in
radians.
"""
plunges, bearings, angles = np.atleast_1d(plunge, bearing, angle)
lons, lats = [], []
for plunge, bearing, angle in zip(plunges, bearings, angles):
lat = (90 - angle) * np.ones(segments, dtype=float)
lon = np.linspace(-180, 180, segments)
lon, lat = _rotate(lon, lat, -plunge, axis='y')
lon, lat = _rotate(np.degrees(lon), np.degrees(lat), bearing, axis='x')
lons.append(lon)
lats.append(lat)
return np.vstack(lons), np.vstack(lats)
示例13: run
def run(self, stars, visits, **kwargs):
# XXX-Double check extinction is close to the Opsim transparency
extinc_mags = visits['transparency']
if extinc_mags != 0.:
# need to decide on how to get extinc_mags from Opsim
# Maybe push some of these params up to be setable?
SFtheta, SFsf = self.SF.CloudSf(500., 300., 5., extinc_mags, .55)
# Call the Clouds
self.cloud.makeCloudImage(SFtheta,SFsf,extinc_mags, fov=self.fov)
# Interpolate clouds to correct position. Nearest neighbor for speed?
nim = self.cloud.cloudimage[0,:].size
# calc position in cloud image of each star
starx_interp = (np.degrees(stars['x']) + self.fov/2.)*3600./ self.cloud.pixscale
stary_interp = (np.degrees(stars['y']) + self.fov/2.)*3600./ self.cloud.pixscale
# Round off position and make it an int
starx_interp = np.round(starx_interp).astype(int)
stary_interp = np.round(stary_interp).astype(int)
# Handle any stars that are out of the field for some reason
starx_interp[np.where(starx_interp < 0)] = 0
starx_interp[np.where(starx_interp > nim-1)] = nim-1
stary_interp[np.where(stary_interp < 0)] = 0
stary_interp[np.where(stary_interp > nim-1)] = nim-1
dmag = self.cloud.cloudimage[starx_interp,stary_interp]
else:
dmag = np.zeros(stars.size)
return dmag
示例14: plot_lm
def plot_lm(d, snrs, l1s, m1s, outroot):
""" Plot the lm coordinates (relative to phase center) for all candidates.
"""
outname = os.path.join(d["workdir"], "plot_" + outroot + "_impeak.png")
snrmin = 0.8 * min(d["sigma_image1"], d["sigma_image2"])
fig4 = plt.Figure(figsize=(10, 10))
ax4 = fig4.add_subplot(111)
# plot positive
good = n.where(snrs > 0)
sizes = (snrs[good] - snrmin) ** 5 # set scaling to give nice visual sense of SNR
xarr = 60 * n.degrees(l1s[good])
yarr = 60 * n.degrees(m1s[good])
ax4.scatter(xarr, yarr, s=sizes, facecolor="none", alpha=0.5, clip_on=False)
# plot negative
good = n.where(snrs < 0)
sizes = (n.abs(snrs[good]) - snrmin) ** 5 # set scaling to give nice visual sense of SNR
xarr = 60 * n.degrees(l1s[good])
yarr = 60 * n.degrees(m1s[good])
ax4.scatter(xarr, yarr, s=sizes, marker="x", edgecolors="k", alpha=0.5, clip_on=False)
ax4.set_xlabel("Dec Offset (amin)")
ax4.set_ylabel("RA Offset (amin)")
fov = n.degrees(1.0 / d["uvres"]) * 60.0
ax4.set_xlim(fov / 2, -fov / 2)
ax4.set_ylim(-fov / 2, fov / 2)
canvas4 = FigureCanvasAgg(fig4)
canvas4.print_figure(outname)
示例15: pitch_roll
def pitch_roll(self, px, pz):
"""works out the pitch (rx) and roll (rz) to apply to an object
on the surface of the map at this point
* returns a tuple (pitch, roll) in degrees
Arguments:
*px*
x location
*pz*
z location
"""
px -= self.unif[0]
pz -= self.unif[2]
halfw = self.width/2.0
halfd = self.depth/2.0
dx = self.width/self.ix
dz = self.depth/self.iy
x0 = int(math.floor((halfw + px)/dx + 0.5))
if x0 < 0: x0 = 0
if x0 > self.ix-1: x0 = self.ix-1
z0 = int(math.floor((halfd + pz)/dz + 0.5))
if z0 < 0: z0 = 0
if z0 > self.iy-1: z0 = self.iy-1
normp = array(self.buf[0].normals[z0*self.ix + x0])
# slight simplification to working out cross products as dirctn always 0,0,1
#sidev = cross(normp, dirctn)
sidev = array([normp[1], -normp[0], 0.0])
sidev = sidev / sqrt(sidev.dot(sidev))
#forwd = cross(sidev, normp)
forwd = array([-normp[2]*normp[0], -normp[2]*normp[1],
normp[0]*normp[0] + normp[1]*normp[1]])
forwd = forwd / sqrt(forwd.dot(forwd))
return (degrees(arcsin(-forwd[1])), degrees(arctan2(sidev[1], normp[1])))