本文整理汇总了Python中numpy.complex_函数的典型用法代码示例。如果您正苦于以下问题:Python complex_函数的具体用法?Python complex_怎么用?Python complex_使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了complex_函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_init
def test_init(self):
import numpy as np
import math
import sys
assert np.intp() == np.intp(0)
assert np.intp("123") == np.intp(123)
raises(TypeError, np.intp, None)
assert np.float64() == np.float64(0)
assert math.isnan(np.float64(None))
assert np.bool_() == np.bool_(False)
assert np.bool_("abc") == np.bool_(True)
assert np.bool_(None) == np.bool_(False)
assert np.complex_() == np.complex_(0)
# raises(TypeError, np.complex_, '1+2j')
assert math.isnan(np.complex_(None))
for c in ["i", "I", "l", "L", "q", "Q"]:
assert np.dtype(c).type().dtype.char == c
for c in ["l", "q"]:
assert np.dtype(c).type(sys.maxint) == sys.maxint
for c in ["L", "Q"]:
assert np.dtype(c).type(sys.maxint + 42) == sys.maxint + 42
assert np.float32(np.array([True, False])).dtype == np.float32
assert type(np.float32(np.array([True]))) is np.ndarray
assert type(np.float32(1.0)) is np.float32
a = np.array([True, False])
assert np.bool_(a) is a
示例2: fun
def fun(self,t, args):
"""Maximum likelihood function to be minimized.
:param numpy_array t: t values.
:param numpy_array args: first entry contains correlation counts, second the corresponding basis as string.
:param numpy_array args: PSIs, all possible basis as Jones vectors.
:return: Function value. See for further information D. F. V. James et al. Phys. Rev. A, 64, 052312 (2001).
:rtype: numpy float
"""
corr_counts=args[0]
basis=args[1]
PSI=args[2]
nbrOfElements=len(basis)
rho_phys = self.rho_phys(t)
#Estimate NormFactor
estNormFactor=[]
for i in range(len(corr_counts)):
estNormFactor.append(np.dot(np.dot(np.conj(PSI[i]), rho_phys),PSI[i]))
NormFactor=np.sum(corr_counts)/np.sum(estNormFactor)
#Optimize density matrix
BraRoh_physKet = np.complex_(np.zeros(nbrOfElements))
for i in range(nbrOfElements):
rhoket = np.array(np.dot(rho_phys,PSI[i]).flat) #Convert 2d to 1d array with flat
BraRoh_physKet[i] = np.complex_(np.dot(np.conj(PSI[i]), rhoket))
return np.real(np.sum((NormFactor*BraRoh_physKet-corr_counts)**2.0/(2.0*NormFactor*BraRoh_physKet)))
示例3: test_init
def test_init(self):
import numpy as np
import math
import sys
assert np.intp() == np.intp(0)
assert np.intp('123') == np.intp(123)
raises(TypeError, np.intp, None)
assert np.float64() == np.float64(0)
assert math.isnan(np.float64(None))
assert np.bool_() == np.bool_(False)
assert np.bool_('abc') == np.bool_(True)
assert np.bool_(None) == np.bool_(False)
assert np.complex_() == np.complex_(0)
#raises(TypeError, np.complex_, '1+2j')
assert math.isnan(np.complex_(None))
for c in ['i', 'I', 'l', 'L', 'q', 'Q']:
assert np.dtype(c).type().dtype.char == c
for c in ['l', 'q']:
assert np.dtype(c).type(sys.maxint) == sys.maxint
for c in ['L', 'Q']:
assert np.dtype(c).type(sys.maxint + 42) == sys.maxint + 42
assert np.float32(np.array([True, False])).dtype == np.float32
assert type(np.float32(np.array([True]))) is np.ndarray
assert type(np.float32(1.0)) is np.float32
a = np.array([True, False])
assert np.bool_(a) is a
示例4: fft_deriv
def fft_deriv ( var ):
#on_error, 2
n = numpy.size(var)
F = old_div(numpy.fft.fft(var),n) #different definition between IDL - python
imag = numpy.complex(0.0, 1.0)
imag = numpy.complex_(imag)
F[0] = 0.0
if (n % 2) == 0 :
# even number
for i in range (1, old_div(n,2)) :
a = imag*2.0*numpy.pi*numpy.float(i)/numpy.float(n)
F[i] = F[i] * a # positive frequencies
F[n-i] = - F[n-i] * a # negative frequencies
F[old_div(n,2)] = F[old_div(n,2)] * (imag*numpy.pi)
else:
# odd number
for i in range (1, old_div((n-1),2)+1) :
a = imag*2.0*numpy.pi*numpy.float(i)/numpy.float(n)
F[i] = F[i] * a
F[n-i] = - F[n-i] * a
result = numpy.fft.ifft(F)*n #different definition between IDL - python
return result
示例5: test_gamma
def test_gamma(self,gamma):
"""Test if :math:`\Gamma_i, {i=1,...,16}` matrices are properly defined.
:param array GAMMA: Gamma matrices.
Test for:
:math:`\mathrm{Tr}(\Gamma_i\Gamma_j)= \delta_{i,j}`
:return: True if equation fullfilled for all gamma matrices, False otherwise.
:rtype: bool
"""
#initialize empty test matrix
test_matrix = np.complex_(np.zeros((16,16)))
for i in range(len(gamma)):
for j in range(len(gamma)):
test_matrix[i,j] = np.trace(np.dot(gamma[i], gamma[j]))
diag_matrix = np.diag(np.ones(16))
test_result = np.einsum('ij,ij',test_matrix - diag_matrix, test_matrix - diag_matrix)-16
if np.abs(test_result) < 10**-6:
return True
else:
False
示例6: __new__
def __new__(cls, x=0):
if isinstance(x, afnumpy.ndarray):
return x.astype(cls)
elif isinstance(x, numbers.Number):
return numpy.complex_(x)
else:
return afnumpy.array(x).astype(cls)
示例7: test_against_cmath
def test_against_cmath(self):
import cmath, sys
# cmath.asinh is broken in some versions of Python, see
# http://bugs.python.org/issue1381
broken_cmath_asinh = False
if sys.version_info < (2, 6):
broken_cmath_asinh = True
points = [-1 - 1j, -1 + 1j, +1 - 1j, +1 + 1j]
name_map = {
"arcsin": "asin",
"arccos": "acos",
"arctan": "atan",
"arcsinh": "asinh",
"arccosh": "acosh",
"arctanh": "atanh",
}
atol = 4 * np.finfo(np.complex).eps
for func in self.funcs:
fname = func.__name__.split(".")[-1]
cname = name_map.get(fname, fname)
try:
cfunc = getattr(cmath, cname)
except AttributeError:
continue
for p in points:
a = complex(func(np.complex_(p)))
b = cfunc(p)
if cname == "asinh" and broken_cmath_asinh:
continue
assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s" % (fname, p, a, b))
示例8: halo_transform
def halo_transform(image):
na=image.shape[0]
nb=image.shape[1]
ko= 5.336
delta = (2.*np.sqrt(-2.*np.log(.75)))/ko
x=np.arange(nb)
y=np.arange(na)
x,y=np.meshgrid(x,y)
if (nb % 2) == 0:
x=(1.*x - (nb)/2.)/nb
shiftx = (nb)/2.
else:
x= (1.*x - (nb-1)/2.)/nb
shiftx=(nb-1.)/2.+1
if (na % 2) == 0:
y=(1.*y-(na/2.))/na
shifty=(na)/2.
else:
y= (1.*y - (na-1)/2.)/ na
shifty=(na-1.)/2.+1
#--------------Spectral Logarithm--------------------
M=int(np.log(nb)/delta)
a2= np.zeros(M)
a2[0]=np.log(nb)
for i in range(M-1):
a2[i+1]=a2[i]-delta
a2=np.exp(a2)
tab_k = 1. / (a2)
wt= np.complex_(np.zeros(((na,nb,M))))
a= ko*a2
imageFT= np.fft.fft2(image)
#imageFT=np.fft.fftshift(image)
imageFT= np.roll(imageFT,int( shiftx), axis=1)
imageFT= np.roll(imageFT,int(shifty), axis=0)
for j in range(M):
uv = 0
uv=np.exp(-0.5*((abs(a[j]*np.sqrt(x**2.+y**2.))**2. - abs(ko))**2.))
uv = uv * a[j]
W1FT=imageFT*(uv)
W1F2=np.roll(W1FT,int(shiftx), axis =1)
W1F2=np.roll(W1F2,int(shifty),axis=0)
#W1F2=np.fft.ifftshift(W1FT)
W1=np.fft.ifft2(W1F2)
wt[:,:,j]=wt[:,:,j]+ W1
return wt, tab_k
示例9: test_params_to_array_inconsistent_types
def test_params_to_array_inconsistent_types(self):
"""
Tests if an assertion error is raised when parameters of different
types are passed in
"""
guess_params_adj = self.guess_params
guess_params_adj[-1] = np.complex_(guess_params_adj[-1])
self.assertRaises(AssertionError, self.affine_obj.params_to_array,
guess_params_adj)
示例10: test_opt_gen_pred_coef_complex
def test_opt_gen_pred_coef_complex(self):
"""
Tests if complex values are return properly
"""
# DOC: Need to make sure that the arrays are also np.complex
guess_params = [np.complex_(el) for el in self.guess_params]
params = self.affine_obj.params_to_array(guess_params)
arrays_gpc = self.affine_obj.opt_gen_pred_coef(*params)
for array in arrays_gpc:
self.assertEqual(array.dtype, np.complex_)
示例11: imdct
def imdct(self,y,i):
"""imdct: inverse mdct
y(np.array) -> mdct signal
i -> index frame size
"""
# frame size
L = self.sizes[i]
# signal size
N = y.size
# Number of frequency channels
K = L/2
# Number of frames
P = N/K
# Reshape y
tmp = y.reshape(P,K)
y = np.zeros( (P,L) )
y[:,:K] = tmp
# Pre-twidle
y = np.complex_(y)
y *= np.tile(np.exp(1j*2.*np.pi*np.arange(L)*(L/2+1)/2./L), (P,1))
# IFFT
x = np.fft.ifft(y);
# Post-twidle
x *= np.tile(np.exp((1./2.)*1j*2*np.pi*(np.arange(L)+((L/2+1)/2.))/L),(P,1));
# Windowing
win = self.window(np.arange(L))
winL = np.copy(win)
winL[:L/4] = 0
winL[L/4:L/2] = 1
winR = np.copy(win)
winR[L/2:3*L/4] = 1
winR[3*L/4:] = 0
x[0,:] *= winL
x[1:-1,:] *= np.tile(win,(P-2,1))
x[-1,:] *= winR
# Real part & scaling
x = np.sqrt(2./K)*L*x.real
# Overlap and add
b = np.repeat(np.arange(P),L)
a = np.tile(np.arange(L),P) + b*K
x = sparse.coo_matrix((x.ravel(),(b,a)),shape=(P,N+K)).sum(axis=0).A1
# Cut edges
return x[K/2:-K/2]
示例12: construct_b_matrix
def construct_b_matrix(self, PSI, GAMMA):
"""Construct B matrix as in D. F. V. James et al. Phys. Rev. A, 64, 052312 (2001).
:param array PSI: :math:`\psi_\\nu` vector with :math:`\\nu=1,...,16`, computed in __init__
:param array GAMMA: :math:`\Gamma` matrices, computed in __init__
:return: :math:`B_{\\nu,\mu} = \\langle \psi_\\nu \\rvert \Gamma_\mu \\lvert \psi_\\nu \\rangle`
:rtype: numpy array
"""
B = np.complex_(np.zeros((16,16)))
for i in range(16):
for j in range(16):
B[i,j] = np.dot(np.conj(PSI[i]) , np.dot(GAMMA[j], PSI[i]))
return B
示例13: from_csv
def from_csv(cls, csv, delimiter="\t"):
'''Constructs class instance from the given csv table. Is used in testing mode. Method is able to construct only 2d space. Is supposed to read tables produced by 'to_csv' method
csv string: path to csv table
delimiter string: csv table delimiter
Return Grid: class instance
'''
def _converter(l):
a = l.strip().split(delimiter)
a = [x.replace("|", "+") + "j" for x in a]
return delimiter.join(a);
array = np.genfromtxt((_converter(x) for x in open(csv)), dtype=str, delimiter=delimiter)
array = np.complex_(array)
encoding_table = [dict([(x,x) for x in range(array.shape[0])]), dict([(x,x) for x in range(array.shape[1])])]
return cls(array, encoding_table);
示例14: besselj
def besselj(n, z):
"""Bessel function of first kind of order n at kr.
Wraps scipy.special.jn(n, z).
Parameters
----------
n : array_like
Order
z: array_like
Argument
Returns
-------
J : array_like
Values of Bessel function of order n at position z
"""
return scy.jv(n, _np.complex_(z))
示例15: test_against_cmath
def test_against_cmath(self):
import cmath, sys
points = [-1-1j, -1+1j, +1-1j, +1+1j]
name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan',
'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'}
atol = 4*np.finfo(np.complex).eps
for func in self.funcs:
fname = func.__name__.split('.')[-1]
cname = name_map.get(fname, fname)
try:
cfunc = getattr(cmath, cname)
except AttributeError:
continue
for p in points:
a = complex(func(np.complex_(p)))
b = cfunc(p)
assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s"%(fname, p, a, b))