当前位置: 首页>>代码示例>>Python>>正文


Python numpy.column_stack函数代码示例

本文整理汇总了Python中numpy.column_stack函数的典型用法代码示例。如果您正苦于以下问题:Python column_stack函数的具体用法?Python column_stack怎么用?Python column_stack使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了column_stack函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: center_galaxy

def center_galaxy(image, original_image, centroid=None):
    if centroid is None:
        # apply median filter to find the galaxy centroid
        centroid = median_filter(image, size=10).argmax()
        centroid = np.unravel_index(centroid, image.shape)
    # recenter image
    roffset = centroid[0] - image.shape[0] / 2
    if roffset < 0:
        # add more white space to top of image
        extra_rows = image.shape[0] - 2 * centroid[0]
        image = np.vstack((np.zeros((extra_rows, image.shape[1])), image))
    elif roffset > 0:
        # add more white space to bottom of image
        extra_rows = 2 * centroid[0] - image.shape[0]
        image = np.vstack((image, np.zeros((extra_rows, image.shape[1]))))
    coffset = centroid[1] - image.shape[1] / 2
    if coffset > 0:
        # add more white space to right of image
        extra_columns = 2 * centroid[1] - image.shape[1]
        image = np.column_stack((image, np.zeros((image.shape[0], extra_columns))))
    elif coffset < 0:
        # add more white space to left of image
        extra_columns = image.shape[1] - 2 * centroid[1]
        image = np.column_stack((np.zeros((image.shape[0], extra_columns)), image))

    return image, centroid
开发者ID:brandonckelly,项目名称:galaxy_zoo,代码行数:26,代码来源:extract_postage_stamp.py

示例2: expected

    def expected(self, window_length, k, closes):
        """Compute the expected data (without adjustments) for the given
        window, k, and closes array.

        This uses talib.BBANDS to generate the expected data.
        """
        lower_cols = []
        middle_cols = []
        upper_cols = []
        for n in range(self.nassets):
            close_col = closes[:, n]
            if np.isnan(close_col).all():
                # ta-lib doesn't deal well with all nans.
                upper, middle, lower = [np.full(self.ndays, np.nan)] * 3
            else:
                upper, middle, lower = talib.BBANDS(
                    close_col,
                    window_length,
                    k,
                    k,
                )

            upper_cols.append(upper)
            middle_cols.append(middle)
            lower_cols.append(lower)

        # Stack all of our uppers, middles, lowers into three 2d arrays
        # whose columns are the sids. After that, slice off only the
        # rows we care about.
        where = np.s_[window_length - 1:]
        uppers = np.column_stack(upper_cols)[where]
        middles = np.column_stack(middle_cols)[where]
        lowers = np.column_stack(lower_cols)[where]
        return uppers, middles, lowers
开发者ID:Elizaveta239,项目名称:zipline,代码行数:34,代码来源:test_technical.py

示例3: writeOut

 def writeOut(self, outname='',include_state=False):
     """
     Function writes out to file... only doing primitive variables for now.
     rho, u, p, maybe tack on e and h ....
     
     This needs to be nice, but for debugging purposes, only doing to 
     write out to ascii for now... just ot be quick and easy to focus on
     coding rather than fancy outputting.....
     """
     x   = self.grid.center()
     rho = self.getPrimitive('Density')
     u   = self.getPrimitive('Velocity')
     P   = self.getPrimitive('Pressure')
     
     if include_state:
         data = np.column_stack((x,rho,u,P,self.q[0],self.q[1],self.q[2]))
         header = '# x Density Velocity Pressure q0 q1 q2'
         
     else:
         data = np.column_stack((x,rho,u,P))
         header = '# x Density Velocity Pressure'
 
     
    # np.savetxt(outname + '_simstate_%3.3f_.txt'%(self.t), data,
     np.savetxt(outname + '_simstate.txt', data, header=header, fmt='%1.4e')
开发者ID:aemerick,项目名称:Classes,代码行数:25,代码来源:roe_1d+(aje's+linux+side's+conflicted+copy+2014-05-11).py

示例4: combineTechnicalIndicators

def combineTechnicalIndicators(ticker):
    dates, prices = getDateAndPrice(ticker)
    np_dates = np.chararray(len(dates), itemsize=len(dates[0]))
    for day in range(len(dates)):
        np_dates[day] = dates[day]

    percentChange = calcDailyPercentChange(prices)
    vol = calc30DayVol(percentChange)
    RSI = calcRSI(prices)


    if ticker == PREDICTED:
        np_prices = np.array(prices)
        label = np.zeros_like(np_prices)

    #create label for price of SPY
        for x in range(len(np_prices[:-lagTime])):
            print x
            if np_prices[x] < np_prices[x + lagTime]:
                label[x] = 1
            else:
                label[x] = 0
        features = np.column_stack((np_dates,  percentChange, vol, RSI, label))
        headers = ['date', 'return_'+ ticker, 'vol_'+ ticker, 'RSI_'+ ticker, 'label']
    else:
        features = np.column_stack((np_dates, percentChange, vol, RSI))
        headers = ['date', 'return_'+ ticker, 'vol_'+ ticker, 'RSI_'+ ticker]

    df_features = pd.DataFrame(features, columns=headers)
    print df_features[25:35]
    return df_features
开发者ID:maxpudi,项目名称:predicting-stock-prices,代码行数:31,代码来源:getData.py

示例5: _recalc

    def _recalc(self):
        self.clear()
        assert len(self.artists) == 0
        if self.layout is None:
            return

        # layout[0] is [x0, x0, x[parent0], nan, ...]
        # layout[1] is [y0, y[parent0], y[parent0], nan, ...]
        ids = 3 * np.arange(self.layer.data.size)

        try:
            if isinstance(self.layer, Subset):
                ids = ids[self.layer.to_mask()]

            x, y = self.layout
            blank = np.zeros(ids.size) * np.nan
            x = np.column_stack([x[ids], x[ids + 1],
                                 x[ids + 2], blank]).ravel()
            y = np.column_stack([y[ids], y[ids + 1],
                                 y[ids + 2], blank]).ravel()
        except IncompatibleAttribute as exc:
            self.disable_invalid_attributes(*exc.args)
            return False

        self.artists = self._axes.plot(x, y, '--')
        return True
开发者ID:JudoWill,项目名称:glue,代码行数:26,代码来源:layer_artist.py

示例6: main

def main():
    
    t0 = time.time() # start time

    # output files path
    TRAINX_OUTPUT = "../../New_Features/train_x_processed.csv"
    TEST_X_OUTPUT = "../../New_Features/test__x_processed.csv"
    # input files path
    TRAIN_FILE_X1 = "../../ML_final_project/sample_train_x.csv"
    TRAIN_FILE_X2 = "../../ML_final_project/log_train.csv"
    TEST__FILE_X1 = "../../ML_final_project/sample_test_x.csv"
    TEST__FILE_X2 = "../../ML_final_project/log_test.csv"
    # load files
    TRAIN_DATA_X1 = np.loadtxt(TRAIN_FILE_X1, delimiter=',', skiprows=1, usecols=(range(1, 18)))
    TEST__DATA_X1 = np.loadtxt(TEST__FILE_X1, delimiter=',', skiprows=1, usecols=(range(1, 18)))
    TRAIN_DATA_X2 = logFileTimeCount(np.loadtxt(TRAIN_FILE_X2, delimiter=',', skiprows=1, dtype=object))
    TEST__DATA_X2 = logFileTimeCount(np.loadtxt(TEST__FILE_X2, delimiter=',', skiprows=1, dtype=object))
    # combine files
    TRAIN_DATA_X0 = np.column_stack((TRAIN_DATA_X1, TRAIN_DATA_X2))
    TEST__DATA_X0 = np.column_stack((TEST__DATA_X1, TEST__DATA_X2))
    # data preprocessing
    scaler = StandardScaler()
    TRAIN_DATA_X = scaler.fit_transform(TRAIN_DATA_X0)
    TEST__DATA_X = scaler.transform(TEST__DATA_X0)
    # output processed files
    outputXFile(TRAINX_OUTPUT, TRAIN_DATA_X)
    outputXFile(TEST_X_OUTPUT, TEST__DATA_X)

    t1 = time.time() # end time
    print "...This task costs " + str(t1 - t0) + " second."
开发者ID:TeamSDJ,项目名称:ML_2015_Final,代码行数:30,代码来源:outputNewFeature.py

示例7: wide_dataset_large

def wide_dataset_large():
    
    

    print("Reading in Arcene training data for binomial modeling.")
    trainDataResponse = np.genfromtxt(tests.locate("smalldata/arcene/arcene_train_labels.labels"), delimiter=' ')
    trainDataResponse = np.where(trainDataResponse == -1, 0, 1)
    trainDataFeatures = np.genfromtxt(tests.locate("smalldata/arcene/arcene_train.data"), delimiter=' ')
    trainData = h2o.H2OFrame(np.column_stack((trainDataResponse, trainDataFeatures)).tolist())

    print("Run model on 3250 columns of Arcene with strong rules off.")
    model = h2o.glm(x=trainData[1:3250], y=trainData[0].asfactor(), family="binomial", lambda_search=False, alpha=[1])

    print("Test model on validation set.")
    validDataResponse = np.genfromtxt(tests.locate("smalldata/arcene/arcene_valid_labels.labels"), delimiter=' ')
    validDataResponse = np.where(validDataResponse == -1, 0, 1)
    validDataFeatures = np.genfromtxt(tests.locate("smalldata/arcene/arcene_valid.data"), delimiter=' ')
    validData = h2o.H2OFrame(np.column_stack((validDataResponse, validDataFeatures)).tolist())
    prediction = model.predict(validData)

    print("Check performance of predictions.")
    performance = model.model_performance(validData)

    print("Check that prediction AUC better than guessing (0.5).")
    assert performance.auc() > 0.5, "predictions should be better then pure chance"
开发者ID:kyoren,项目名称:https-github.com-h2oai-h2o-3,代码行数:25,代码来源:pyunit_wide_dataset_largeGLM.py

示例8: get_peaks

def get_peaks(data,threshold,gap_threshold):
	# apply threshold, result is a boolean array
	abovethr = np.where( data >= threshold )[0]
	belowthr = np.where( data <  threshold )[0]
	
	#### extract peaks
	# first, find gaps in "above"/"below" labels (differences bigger than 1)
	b1 = np.where( np.diff(abovethr)>1 )[0]
	b2 = np.where( np.diff(belowthr)>1 )[0]
	
	#~ pdb.set_trace()
	
	# second, concatenate peak start and stop indices
	# note the +1 which fixes the diff-offset
	if belowthr[b2][0] > abovethr[b1][0]:
		b1 = b1[1:]
	if len(belowthr[b2]) == len(abovethr[b1]):
		indices = np.column_stack(( belowthr[b2],abovethr[b1])) + 1
	else:
		indices = np.column_stack(( belowthr[b2], 
					np.concatenate((abovethr[b1],[abovethr[-1]])) )) + 1
	
	# third, merge peaks if they are very close to eachother
	indices_gaps = indices.flatten()[1:-1].reshape((-1,2))
	gaps_to_preserve = np.where(np.diff(indices_gaps).flatten() > gap_threshold )[0]

	indices_filtered = np.concatenate(( [indices[0,0]], 
											indices_gaps[gaps_to_preserve].flatten(), 
											[indices[-1,1]] )).reshape((-1,2))
											
	return indices_filtered
开发者ID:mbraeunlein,项目名称:CurrentVoltage,代码行数:31,代码来源:get_peaks.py

示例9: write_parameters_outputvalues

	def write_parameters_outputvalues(self, P):		


		Mstar, SFR_opt, _ = model.stellar_info_array(self.chain.flatchain_sorted, self.data, self.out['realizations2int'])
		column_names = np.transpose(np.array(["P025","P16","P50","P84","P975"], dtype='|S3'))
		chain_pars = np.column_stack((self.chain.flatchain_sorted, Mstar, SFR_opt))		
											# np.mean(chain_pars, axis[0]),
											# np.std(chain_pars, axis[0]),
		if self.out['calc_intlum']:			


			SFR_IR = model.sfr_IR(self.int_lums[0]) #check that ['intlum_names'][0] is always L_IR(8-100)
			
			chain_others =np.column_stack((self.int_lums.T, SFR_IR))
			outputvalues = np.column_stack((np.transpose(map(lambda v: (v[0],v[1],v[2],v[3],v[4]), zip(*np.percentile(chain_pars, [2.5,16, 50, 84,97.5], axis=0)))),
											np.transpose(map(lambda v: (v[0],v[1],v[2],v[3],v[4]), zip(*np.percentile(chain_others, [2.5,16, 50, 84,97.5], axis=0))))											)) 


	
			outputvalues_header= ' '.join([ i for i in np.hstack((P.names, 'Mstar', 'SFR_opt', self.out['intlum_names'], 'SFR_IR',))] )

		else:
			outputvalues = np.column_stack((map(lambda v: (v[1], v[2]-v[1], v[1]-v[0]), zip(*np.percentile(chain_pars, [16, 50, 84],  axis=0))))) 
			outputvalues_header=' '.join( [ i for i in P.names] )
		return outputvalues, outputvalues_header
开发者ID:GabrielaCR,项目名称:functions,代码行数:25,代码来源:PLOTandWRITE_AGNfitter2.py

示例10: residuals

    def residuals(self, src, dst):
        """Compute the Sampson distance.

        The Sampson distance is the first approximation to the geometric error.

        Parameters
        ----------
        src : (N, 2) array
            Source coordinates.
        dst : (N, 2) array
            Destination coordinates.

        Returns
        -------
        residuals : (N, ) array
            Sampson distance.

        """
        src_homogeneous = np.column_stack([src, np.ones(src.shape[0])])
        dst_homogeneous = np.column_stack([dst, np.ones(dst.shape[0])])

        F_src = self.params @ src_homogeneous.T
        Ft_dst = self.params.T @ dst_homogeneous.T

        dst_F_src = np.sum(dst_homogeneous * F_src.T, axis=1)

        return np.abs(dst_F_src) / np.sqrt(F_src[0] ** 2 + F_src[1] ** 2
                                           + Ft_dst[0] ** 2 + Ft_dst[1] ** 2)
开发者ID:Cadair,项目名称:scikit-image,代码行数:28,代码来源:_geometric.py

示例11: process_recarray

def process_recarray(data, endog_idx=0, exog_idx=None, stack=True, dtype=None):
    names = list(data.dtype.names)

    if isinstance(endog_idx, (int, long)):
        endog = array(data[names[endog_idx]], dtype=dtype)
        endog_name = names[endog_idx]
        endog_idx = [endog_idx]
    else:
        endog_name = [names[i] for i in endog_idx]

        if stack:
            endog = np.column_stack(data[field] for field in endog_name)
        else:
            endog = data[endog_name]

    if exog_idx is None:
        exog_name = [names[i] for i in range(len(names))
                     if i not in endog_idx]
    else:
        exog_name = [names[i] for i in exog_idx]

    if stack:
        exog = np.column_stack(data[field] for field in exog_name)
    else:
        exog = recarray_select(data, exog_name)

    if dtype:
        endog = endog.astype(dtype)
        exog = exog.astype(dtype)

    dataset = Dataset(data=data, names=names, endog=endog, exog=exog,
                      endog_name=endog_name, exog_name=exog_name)

    return dataset
开发者ID:BranYang,项目名称:statsmodels,代码行数:34,代码来源:utils.py

示例12: create_colored_3d_points_from_matrices

def create_colored_3d_points_from_matrices(matrices, index_list):
    points3d_l = []
    colors_ll = []
    mat_l = []
    X_MULTIPLIER = 1/15.

    for i, mat in enumerate(matrices):
        X, Y = np.meshgrid(range(mat.shape[0]), range(mat.shape[1]))
        x_size = mat.shape[0] * X_MULTIPLIER
        X = np.matrix(X * X_MULTIPLIER) + x_size * i + (i * x_size / 3.)
        #Y = (np.matrix(np.ones((mat.shape[0], 1))) * times_m).T
        Y = (np.matrix(np.ones((mat.shape[0], 1))) * index_list[i]).T
        Z = np.matrix(np.zeros(mat.shape)).T

        points = np.row_stack((X.reshape(1, X.shape[0] * X.shape[1]),
                               Y.reshape(1, Y.shape[0] * Y.shape[1]),
                               Z.reshape(1, Z.shape[0] * Z.shape[1])))
        colors = np.matrix(np.zeros((4, mat.shape[0]*mat.shape[1])))
        mat_l.append(mat.T.reshape((1,mat.shape[1] * mat.shape[0])))
        points3d_l.append(points)
        colors_ll.append(colors)

    all_mats = np.column_stack(mat_l)
    all_points = np.column_stack(points3d_l)
    all_colors = np.column_stack(colors_ll)
    return all_mats, all_points, all_colors
开发者ID:gt-ros-pkg,项目名称:hrl,代码行数:26,代码来源:success_classifier.py

示例13: listener_func

 def listener_func(msg):
     amat = vectorize_func(msg)
     t    = np.matrix([msg.header.stamp.to_time()])
     got_lock = False
     if self.channels[topic][0] == None:
         self.channels[topic] = [amat, t, threading.RLock()]
     else:
         lock = self.channels[topic][2]
         lock.acquire()
         got_lock = True
         #print 'l locked'
         new_record = [np.column_stack((self.channels[topic][0], amat)), 
                       np.column_stack((self.channels[topic][1], t)),
                       lock]
         #print 'got something', new_record[0].shape
         self.channels[topic] = new_record
         #print 'after appending', self.channels[topic][0].shape, self.channels[topic][1].shape
         #print 'time recorded is', t[0,0]
         #print 'shape', self.channels[topic][0].shape
         #lock.release()
         #print 'l released'
                                 
     lock = self.channels[topic][2]
     if not got_lock:
         lock.acquire()
     #lock.acquire()
     #select only messages n-seconds ago
     n_seconds_ago = t[0,0] - buffer_length_secs
     records_in_range = (np.where(self.channels[topic][1] >= n_seconds_ago)[1]).A1
     #print records_in_range, self.channels[topic][0].shape
     self.channels[topic][0] = self.channels[topic][0][:, records_in_range]
     self.channels[topic][1] = self.channels[topic][1][:, records_in_range]
     #print 'after shortening', self.channels[topic][0].shape, self.channels[topic][1].shape
     #print 'shape after selection...', self.channels[topic][0].shape
     lock.release()
开发者ID:gt-ros-pkg,项目名称:hrl,代码行数:35,代码来源:success_classifier.py

示例14: main

def main(): #clustering and write output
    if len(pep_array)>1:
        matrix=[]
        for i in range(0,len(pep_array)):
            matrix.append(pep_array[i][4].replace('\"',"").split(','))

        dataMatrix=numpy.array(matrix,dtype=float)
        d = sch.distance.pdist(dataMatrix,metric)# vector of pairwise distances
        if metric=="correlation":
            D = numpy.clip(d,0,2) #when using correlation, all values in distance matrix should be in range[0,2]
        else:
            D=d
        try:
            cutoff=float(t)
        except ValueError:
            print "please provide a numeric value for --t"; sys.exit()
        L = sch.linkage(D, method,metric)
        ind = sch.fcluster(L,cutoff,'distance')#distance is dissmilarity(1-correlation)
        p=numpy.array(pep_array)
        p=numpy.column_stack([p,ind])
        formatoutput(p)
    else:
        p=numpy.array(pep_array)
        p=numpy.column_stack([p,[0]])
        formatoutput(p)
开发者ID:Nausx,项目名称:SpliceVista,代码行数:25,代码来源:clusterpeptide.py

示例15: main

def main():
	LAMB = 10.0
	SPLIT = 40

	t0 = time.time()

	TRAIN19_FILE = 'hw4_train.dat'
	TRAIN19_DATA = np.loadtxt(TRAIN19_FILE, dtype=np.float)
	xTrain19 = np.column_stack((np.ones(TRAIN19_DATA.shape[0]), TRAIN19_DATA[:, 0:(TRAIN19_DATA.shape[1] - 1)]))
	yTrain19 = TRAIN19_DATA[:, (TRAIN19_DATA.shape[1] - 1)]

	TEST19_FILE = 'hw4_test.dat'
	TEST19_DATA = np.loadtxt(TEST19_FILE, dtype=np.float)
	xTest19 = np.column_stack((np.ones(TEST19_DATA.shape[0]), TEST19_DATA[:, 0:(TEST19_DATA.shape[1] - 1)]))
	yTest19 = TEST19_DATA[:, (TEST19_DATA.shape[1] - 1)]

	lambPowList = []
	eCvList     = []
	for lambPower in range(-10, 3):
		eCv = vFoldErr(xTrain19, yTrain19, math.pow(LAMB, lambPower), SPLIT)
		lambPowList.append(lambPower)
		eCvList.append(eCv)
	eCvList  = np.array(eCvList)
	minIndex = np.where(eCvList == eCvList.min())
	index    = minIndex[0].max()
	plotHist(lambPowList, eCvList, "log(lambda)", "Ecv", "Q19", 1, False)

	t1 = time.time()
	print '========================================================='
	print 'Question 19: log(lambda) is', lambPowList[index], 'Ecv is', eCvList[index]
	print '---------------------------------------------------------'
	print 'Q19 costs', t1 - t0, 'seconds'
	print '========================================================='
开发者ID:DaMinaup6,项目名称:Machine-Learning,代码行数:33,代码来源:Q19.py


注:本文中的numpy.column_stack函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。