本文整理汇总了Python中numpy.c函数的典型用法代码示例。如果您正苦于以下问题:Python c函数的具体用法?Python c怎么用?Python c使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了c函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: GetEulerAngles
def GetEulerAngles(R):
#phi = atan2(R(3,2),R(3,3));
#theta = asin(-R(3,1));
#psi = atan2(R(2,1),R(1,1));
EULER = numpy.array([0.0,0.0,0.0])
sin_theta = -R[2,0]
sin_theta = numpy.clip(sin_theta,1,-1)
theta = numpy.arcsin(sin_theta)
EULER[1] = theta
sin_phi = R[2,1]/c(theta)
sin_phi = numpy.clip(sin_phi,1,-1)
cos_phi = R[2,2]/c(theta)
cos_phi = numpy.clip(cos_phi,1,-1)
phi = numpy.arctan2(sin_phi,cos_phi)
EULER[0] = phi
sin_psi = R[1,0]/c(theta)
sin_psi = numpy.clip(sin_psi,1,-1)
cos_psi = R[0,0]/c(theta)
cos_psi = numpy.clip(cos_psi,1,-1)
psi = numpy.arctan2(sin_psi,cos_psi)
EULER[2] = psi
# EULER[0] = numpy.arctan2(numpy.clip(R[2,1],1,-1),numpy.clip(R[2,2],1,-1));
# EULER[1] = numpy.arcsin(-numpy.clip(R[2,0],1,-1));
# EULER[2] = numpy.arctan2(numpy.clip(R[1,0],1,-1),numpy.clip(R[0,0],1,-1));
return EULER
示例2: J
def J(ph,th):
global Ixx
global Iyy
global Izz
return array([
[Ixx , 0 , -Ixx * s(th) ],
[0 , Iyy*(c(ph)**2) + Izz * s(ph)**2 , (Iyy-Izz)*c(ph)*s(ph)*c(th) ],
[-Ixx*s(th) , (Iyy-Izz)*c(ph)*s(ph)*c(th) , Ixx*(s(th)**2) + Iyy*(s(th)**2)*(c(th)**2) + Izz*(c(ph)**2)*(c(th)**2)]
])
示例3: J
def J(self):
ixx = self.Ixx
iyy = self.Iyy
izz = self.Izz
th = self.theta[-1]
ph = self.phi[-1]
j11 = ixx
j12 = 0
j13 = -ixx * s(th)
j21 = 0
j22 = iyy*(c(ph)**2) + izz * s(ph)**2
j23 = (iyy-izz)*c(ph)*s(ph)*c(th)
j31 = -ixx*s(th)
j32 = (iyy-izz)*c(ph)*s(ph)*c(th)
j33 = ixx*(s(th)**2) + iyy*(s(th)**2)*(c(th)**2) + izz*(c(ph)**2)*(c(th)**2)
return array([
[j11, j12, j13],
[j21, j22, j23],
[j31, j32, j33]
])
示例4: traj_des
def traj_des(self,t):
from numpy import cos as c
from numpy import sin as s
r = self.r
w = self.w
p = r*w**0*numpy.array([ c(w*t),-s(w*t),0.0]);
v = r*w**1*numpy.array([-s(w*t),-c(w*t),0.0]);
a = r*w**2*numpy.array([-c(w*t), s(w*t),0.0]);
j = r*w**3*numpy.array([ s(w*t), c(w*t),0.0]);
s = r*w**4*numpy.array([ c(w*t),-s(w*t),0.0]);
return numpy.concatenate([p,v,a,j,s])
示例5: euler_desired
def euler_desired(U,psi):
# desired roll and pitch angles
n_des = U/numpy.linalg.norm(U)
n_des_rot = Rz(-psi).dot(n_des)
sin_phi = -n_des_rot[1]
sin_phi = bound(sin_phi,1,-1)
phi = numpy.arcsin(sin_phi)
sin_theta = n_des_rot[0]/c(phi)
sin_theta = bound(sin_theta,1,-1)
cos_theta = n_des_rot[2]/c(phi)
cos_theta = bound(cos_theta,1,-1)
pitch = numpy.arctan2(sin_theta,cos_theta)
return (phi,pitch)
开发者ID:KTH-AEROWORKS,项目名称:sml_under_development,代码行数:16,代码来源:LoadTransportController_Some_Scenarios.py
示例6: _get_untransformed_point
def _get_untransformed_point(self, time):
t = time
r = self.radius
w = self.angular_velocity
rot = self.rotation
off = self.offset
p = numpy.zeros(4)
v = numpy.zeros(4)
a = numpy.zeros(4)
j = numpy.zeros(4)
sn = numpy.zeros(4)
cr = numpy.zeros(4)
p[0:3] = r*(numpy.array([c(w * t), -s(w * t), 0.0])-numpy.array([1.0, 0.0, 0.0]))
v[0:3] = r * w**1 * numpy.array([-s(w * t), -c(w * t), 0.0])
a[0:3] = r * w**2 * numpy.array([-c(w * t), s(w * t), 0.0])
j[0:3] = r * w**3 * numpy.array([s(w * t), c(w * t), 0.0])
sn[0:3] = r * w**4 * numpy.array([c(w * t), -s(w * t), 0.0])
cr[0:3] = r * w**5 * numpy.array([-s(w * t), -c(w * t), 0.0])
p[3] = -numpy.arctan2(s(w*t),c(w*t))
v[3] = -w
a[3] = 0.0
j[3] = 0.0
sn[3] = 0.0
cr[3] = 0.0
return p, v, a, j, sn, cr
示例7: traj_des
def traj_des(t):
# p = numpy.array([0.6,0.0,0.0]);
# v = numpy.array([0.0,0.0,0.0]);
# a = numpy.array([0.0,0.0,0.0]);
# j = numpy.array([0.0,0.0,0.0]);
# s = numpy.array([0.0,0.0,0.0]);
from numpy import cos as c
from numpy import sin as s
r = 0.0
w = 0.0
p = r*w**0*numpy.array([ c(w*t), s(w*t),0.0]);
v = r*w**1*numpy.array([-s(w*t), c(w*t),0.0]);
a = r*w**2*numpy.array([-c(w*t),-s(w*t),0.0]);
j = r*w**3*numpy.array([ s(w*t),-c(w*t),0.0]);
s = r*w**4*numpy.array([ c(w*t), s(w*t),0.0]);
return concatenate([p,v,a,j,s])
开发者ID:KTH-AEROWORKS,项目名称:sml_under_development,代码行数:20,代码来源:LoadTransportController_Some_Scenarios.py
示例8: control_block
def control_block(self):
# calculate the integral of the error in position for each direction
self.x_integral_error.append( self.x_integral_error[-1] + (self.x_des - self.x[-1])*self.h )
self.y_integral_error.append( self.y_integral_error[-1] + (self.y_des - self.y[-1])*self.h )
self.z_integral_error.append( self.z_integral_error[-1] + (self.z_des - self.z[-1])*self.h )
# computte the comm linear accelerations needed to move the system from present location to the desired location
self.xacc_comm.append( self.kdx * (self.xdot_des - self.xdot[-1])
+ self.kpx * ( self.x_des - self.x[-1] )
+ self.kddx * (self.xdd_des - self.xddot[-1] )
+ self.kix * self.x_integral_error[-1] )
self.yacc_comm.append( self.kdy * (self.ydot_des - self.ydot[-1])
+ self.kpy * ( self.y_des - self.y[-1] )
+ self.kddy * (self.ydd_des - self.yddot[-1] )
+ self.kiy * self.y_integral_error[-1] )
self.zacc_comm.append( self.kdz * (self.zdot_des - self.zdot[-1])
+ self.kpz * ( self.z_des - self.z[-1] )
+ self.kddz * (self.zdd_des - self.zddot[-1] )
+ self.kiz * self.z_integral_error[-1] )
# need to limit the max linear acceleration that is perscribed by the control law
# as a meaningful place to start, just use the value '10m/s/s' , compare to g = -9.8 ...
max_latt_acc = 5
max_z_acc = 30
if abs(self.xacc_comm[-1]) > max_latt_acc: self.xacc_comm[-1] = max_latt_acc * sign(self.xacc_comm[-1])
if abs(self.yacc_comm[-1]) > max_latt_acc: self.yacc_comm[-1] = max_latt_acc * sign(self.yacc_comm[-1])
if abs(self.zacc_comm[-1]) > max_z_acc: self.zacc_comm[-1] = max_z_acc * sign(self.zacc_comm[-1])
min_z_acc = 12
if self.zacc_comm[-1] < min_z_acc: self.zacc_comm[-1] = min_z_acc
# using the comm linear accellerations, calc theta_c, phi_c and T_c
theta_numerator = (self.xacc_comm[-1] * c(self.psi[-1]) + self.yacc_comm[-1] * s(self.psi[-1]) )
theta_denominator = float( self.zacc_comm[-1] + self.g )
if theta_denominator <= 0:
theta_denominator = 0.1 # don't divide by zero !!!
self.theta_comm.append(arctan2( theta_numerator , theta_denominator ))
self.phi_comm.append(arcsin( (self.xacc_comm[-1] * s(self.psi[-1]) - self.yacc_comm[-1] * c(self.psi[-1]) ) / float(sqrt( self.xacc_comm[-1]**2 +
self.yacc_comm[-1]**2 +
(self.zacc_comm[-1] + self.g)**2 )) ))
self.T_comm.append(self.m * ( self.xacc_comm[-1] * ( s(self.theta[-1])*c(self.psi[-1])*c(self.phi[-1]) + s(self.psi[-1])*s(self.phi[-1]) ) +
self.yacc_comm[-1] * ( s(self.theta[-1])*s(self.psi[-1])*c(self.phi[-1]) - c(self.psi[-1])*s(self.phi[-1]) ) +
(self.zacc_comm[-1] + self.g) * ( c(self.theta[-1])*c(self.phi[-1]) )
))
if self.T_comm[-1] < 1.0:
self.T_comm = self.T_comm[:-1]
self.T_comm.append(1.0)
# we will need the derivatives of the comanded angles for the torque control laws.
self.phidot_comm = (self.phi_comm[-1] - self.phi_comm[-2])/self.h
self.thetadot_comm = (self.theta_comm[-1] - self.theta_comm[-2])/self.h
# solve for torques based on theta_c, phi_c and T_c , also psi_des , and previous values of theta, phi, and psi
tao_phi_comm_temp = ( self.kpphi*(self.phi_comm[-1] - self.phi[-1]) + self.kdphi*(self.phidot_comm - self.phidot[-1]) )*self.Ixx
tao_theta_comm_temp = ( self.kptheta*(self.theta_comm[-1] - self.theta[-1]) + self.kdtheta*(self.thetadot_comm - self.thetadot[-1]) )*self.Iyy
tao_psi_comm_temp = ( self.kppsi*(self.psi_des - self.psi[-1]) + self.kdpsi*( self.psidot_des - self.psidot[-1] ) )*self.Izz
self.tao_phi_comm.append(tao_phi_comm_temp )
self.tao_theta_comm.append(tao_theta_comm_temp )
self.tao_psi_comm.append(tao_psi_comm_temp )
#--------------------------------solve for motor speeds, eq 24
self.w1_arg.append( (self.T_comm[-1] / (4.0*self.k)) - ( self.tao_theta_comm[-1] / (2.0*self.k*self.L) ) - ( self.tao_psi_comm[-1] / (4.0*self.b) ) )
self.w2_arg.append( (self.T_comm[-1] / (4.0*self.k)) - ( self.tao_phi_comm[-1] / (2.0*self.k*self.L) ) + ( self.tao_psi_comm[-1] / (4.0*self.b) ) )
self.w3_arg.append( (self.T_comm[-1] / (4.0*self.k)) + ( self.tao_theta_comm[-1] / (2.0*self.k*self.L) ) - ( self.tao_psi_comm[-1] / (4.0*self.b) ) )
self.w4_arg.append( (self.T_comm[-1] / (4.0*self.k)) + ( self.tao_phi_comm[-1] / (2.0*self.k*self.L) ) + ( self.tao_psi_comm[-1] / (4.0*self.b) ) )
self.w1.append( sqrt( self.w1_arg[-1] ) )
self.w2.append( sqrt( self.w2_arg[-1] ) )
#.........这里部分代码省略.........
示例9: Rz
def Rz(tt):
return numpy.array([[c(tt),-s(tt),0.0],[s(tt),c(tt),0.0],[0.0,0.0,1]])
开发者ID:KTH-AEROWORKS,项目名称:sml_under_development,代码行数:3,代码来源:LoadTransportController_Some_Scenarios.py
示例10: Ry
def Ry(tt):
return numpy.array([[c(tt),0.0,s(tt)],[0.0,1,0.0],[-s(tt),0.0,c(tt)]])
开发者ID:KTH-AEROWORKS,项目名称:sml_under_development,代码行数:3,代码来源:LoadTransportController_Some_Scenarios.py
示例11: Rx
def Rx(tt):
return numpy.array([[1.0,0.0,0.0],[0.0,c(tt),-s(tt)],[0.0,s(tt),c(tt)]])
开发者ID:KTH-AEROWORKS,项目名称:sml_under_development,代码行数:3,代码来源:LoadTransportController_Some_Scenarios.py
示例12: system_iteration
def system_iteration(x_des,
y_des,
z_des,
h,
x,y,z,xdot,ydot,zdot,xddot,yddot,zddot,
phi,theta,psi,phidot,thetadot,psidot,phiddot,thetaddot,psiddot,
w1,w2,w3,w4,
tao_phi,tao_theta,tao_psi,
T,
max_total_thrust,
min_total_thrust,
ith_wind_x,
ith_wind_y,
ith_wind_z,
kpx = 10.0,
kpy = 10.0,
kpz = 8.0,
kdx = 5.0,
kdy = 5.0,
kdz = 5.0,
kix = 1,
kiy = 1,
kiz = 1,
xError,
yError,
zError
):
kpphi = 8.0
kptheta = 6.0
kppsi = 6.0
kdphi = 1.75
kdtheta = 1.75
kdpsi = 1.75
#--------------------------------nonlinear roll/pitch control law gains
sPh1 = 3
sPh2 = 3
sPh3 = 2
sPh4 = .1
sTh1 = 3
sTh2 = 3
sTh3 = 2
sTh4 = .1
#--------------------------------control expressions eq 23
# the following two expressions for total thrust and torque about z axis are from 'teppo_luukkenon'
T_k = (g + kdz*( zdot_des - zdot[-1] ) + kpz*( z_des - z[-1] ) + kiz*zError )* m/float( c(phi[-1]) * c(theta[-1]))
if T_k <= min_total_thrust:
T.append( min_total_thrust )
elif T_k >= max_total_thrust:
T.append( max_total_thrust )
elif T_k > 0 and T_k <= max_total_thrust :
T.append( T_k )
tao_psi.append( ( kdpsi*( psidot_des - psidot[-1] ) + kppsi*( psi_des - psi[-1] ) ) * Izz )
#equation 61 in 'real-time stablization and tracking'
tao_phi.append( - sPh1 * (phidot[-1] + sPh2 * (phi[-1] + phidot[-1] +
sPh3 * ( 2 * phi[-1] + phidot[-1] + ( ydot[-1]/g ) +
sPh4 * (phidot[-1] + 3 * phi[-1] + 3 * ( ydot[-1]/(g) ) + y[-1]/(g) )))) * Ixx
)
#equation 66 in 'real-time stablization and tracking'
tao_theta.append( - sTh1 * ( thetadot[-1] + sTh2 * ( theta[-1] + thetadot[-1] +
sTh3 * ( 2 * theta[-1] + thetadot[-1] - ( xdot[-1]/(g) ) +
sTh4 * ( thetadot[-1] + 3 * theta[-1] - 3 * ( thetadot[-1]/(g) ) - x[-1]/(g) )))) * Iyy
)
# original pd contol expressions for roll and pitch
# tao_phi.append( ( kdphi*( phidot_des - phidot[-1] ) + kpphi*( phi_des - phi[-1] ) ) * Ixx )
# tao_theta.append( ( kdtheta*( thetadot_des - thetadot[-1] ) + kptheta*( theta_des - theta[-1] ) )*Iyy)
#--------------------------------solve for motor speeds, eq 24
w1.append( sqrt( (T[-1] / (4.0*k)) - ( tao_theta[-1] / (2.0*k*L) ) - ( tao_psi[-1] / (4.0*b) ) ) )
#.........这里部分代码省略.........
示例13: rot_x
def rot_x(tt):
"""This function returns the rotation matrix corresponding to a rotation
of tt radians about the x-axis.
"""
return numpy.array(
[[1.0, 0.0, 0.0], [0.0, c(tt), -s(tt)], [0.0, s(tt), c(tt)]])
示例14: range
w1 = []
w2 = []
w3 = []
w4 = []
etaddot = []
#----------------------------------
max_iterations = 5000
h = 0.001
for i in range(max_iterations):
#--------------------------------control expressions eq 23
T.append( (g + kdz*( zdot_des - zdot[-1] ) + kpz*( z_des - z[-1] ))* m/float( c(phi[-1]) * c(theta[-1])) )
tao_phi.append( ( kdphi*( phidot_des - phidot[-1] ) + kpphi*( phi_des - phi[-1] ) ) * Ixx )
tao_theta.append( ( kdtheta*( thetadot_des - thetadot[-1] ) + kptheta*( theta_des - theta[-1] ) )*Iyy)
tao_psi.append( ( kdpsi*( psidot_des - psidot[-1] ) + kppsi*( psi_des - psi[-1] ) ) * Izz )
#--------------------------------solve for motor speeds, eq 24
w1.append( sqrt( (T[-1] / (4.0*k)) - ( tao_theta[-1] / (2.0*k*L) ) - ( tao_psi[-1] / (4.0*b) ) ) )
w2.append( sqrt( (T[-1] / (4.0*k)) - ( tao_phi[-1] / (2.0*k*L) ) + ( tao_psi[-1] / (4.0*b) ) ) )
w3.append( sqrt( (T[-1] / (4.0*k)) + ( tao_theta[-1] / (2.0*k*L) ) - ( tao_psi[-1] / (4.0*b) ) ) )
w4.append( sqrt( (T[-1] / (4.0*k)) + ( tao_phi[-1] / (2.0*k*L) ) + ( tao_psi[-1] / (4.0*b) ) ) )
#---------------------------------calculate new linear accelerations
示例15: rot_y
def rot_y(tt):
"""This function returns the rotation matrix corresponding to a rotation
of tt radians about the y-axis.
"""
return np.array(
[[c(tt), 0.0, s(tt)], [0.0, 1, 0.0], [-s(tt), 0.0, c(tt)]])