当前位置: 首页>>代码示例>>Python>>正文


Python numpy.broadcast函数代码示例

本文整理汇总了Python中numpy.broadcast函数的典型用法代码示例。如果您正苦于以下问题:Python broadcast函数的具体用法?Python broadcast怎么用?Python broadcast使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了broadcast函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: indices

 def indices(self):
     if self.ndim == 2:
         return list(np.broadcast(*np.ogrid[
             :self.shape[1], :self.shape[0]]))
     else:
         return list(np.broadcast(*np.ogrid[
             :self.shape[2], :self.shape[1], :self.shape[0]]))
开发者ID:albeanth,项目名称:openmc,代码行数:7,代码来源:lattice.py

示例2: _validate_mask_and_error

    def _validate_mask_and_error(self):
        """
        Raises ValueError if they don't match (using ~numpy.broadcast)
        """

        try:
            if self.mask is not None:
                np.broadcast(self.data, self.mask)
            maskmatch = True
        except ValueError:
            maskmatch = False

        try:
            if self.error is not None:
                np.broadcast(self.data, self.error)
            errmatch = True
        except ValueError:
            errmatch = False

        if not errmatch and not maskmatch:
            raise ValueError('NDData error and mask do not match data')
        elif not errmatch:
            raise ValueError('NDData error does not match data')
        elif not maskmatch:
            raise ValueError('NDData mask does not match data')
开发者ID:lmoustakas,项目名称:astropy,代码行数:25,代码来源:nddata.py

示例3: classify

    def classify(self, lattice):
        """Determine lattice element indices which might contain the TRISO particle.

        Parameters
        ----------
        lattice : openmc.RectLattice
            Lattice to check

        Returns
        -------
        list of tuple
            (z,y,x) lattice element indices which might contain the TRISO
            particle.

        """

        ll, ur = self.region.bounding_box
        if lattice.ndim == 2:
            (i_min, j_min), p = lattice.find_element(ll)
            (i_max, j_max), p = lattice.find_element(ur)
            return list(np.broadcast(*np.ogrid[
                j_min:j_max+1, i_min:i_max+1]))
        else:
            (i_min, j_min, k_min), p = lattice.find_element(ll)
            (i_max, j_max, k_max), p = lattice.find_element(ur)
            return list(np.broadcast(*np.ogrid[
                k_min:k_max+1, j_min:j_max+1, i_min:i_max+1]))
开发者ID:mit-crpg,项目名称:openmc,代码行数:27,代码来源:triso.py

示例4: check_mean_sigma_keepdims

def check_mean_sigma_keepdims(a, axis):
    mu1, sigma1 = mean_sigma(a, axis, keepdims=False)
    mu2, sigma2 = mean_sigma(a, axis, keepdims=True)

    assert_array_equal(mu1.ravel(), mu2.ravel())
    assert_array_equal(sigma1.ravel(), sigma2.ravel())

    assert_array_equal(np.broadcast(a, mu2).shape, a.shape)
    assert_array_equal(np.broadcast(a, sigma2).shape, a.shape)
开发者ID:BTY2684,项目名称:astroML,代码行数:9,代码来源:test_stats.py

示例5: _set_error

 def _set_error(self, value):
     if value is not None:
         try:
             np.broadcast(self.data, value)
         except ValueError:
             raise ValueError("dimensions of `error` do not match data")
         else:
             self._error = value
     else:
         self._error = value
开发者ID:fgrollier,项目名称:astropy,代码行数:10,代码来源:nddata.py

示例6: logsubtrexp

def logsubtrexp(minuend, subtrahend, sign_minuend = None, sign_subtrahend = None):

    if sign_minuend is None:
        sign_minuend = np.ones(minuend.shape)
    if sign_subtrahend is None:
        sign_subtrahend = np.ones(subtrahend.shape)
    if not (minuend.shape == sign_minuend.shape and subtrahend.shape == sign_subtrahend.shape):
        raise ValueError("sign arguments expected be of same shape as corresponding log-matrices")
    if not (np.abs(sign_minuend).all() and np.abs(sign_subtrahend).all()):
        raise ValueError("sign arguments expected to contain only +1 or -1 elements")
        
    b = np.broadcast(minuend, subtrahend)
    s_b = np.broadcast(sign_minuend, sign_subtrahend)
    abs_res = np.empty(b.shape)
    sign_res = np.empty(b.shape)
    
    for i in range(b.size):
        (m, s) = b.next()
        (sign_m, sign_s) = s_b.next()
        if sign_m > sign_s: # sign_m == 1 and sign_s == -1
            # this is equivalent to logsumexp(m, s)
            #print("sign_m > sign_s")
            sign_res.flat[i] = 1
            abs_res.flat[i] = logsumexp((m,s))
        elif sign_m < sign_s: # sign_m == -1 and sign_s == 1
            #print("sign_m < sign_s")
            sign_res.flat[i] = -1
            abs_res.flat[i] = logsumexp((m,s))
        else:
            #signs are eqal
            if m == s:                
                sign_res.flat[i] = 1
                abs_res.flat[i] = log(0)
            else:
                if sign_m == -1:
                    if m > s:
                        #print("m >= s")
                        sign_res.flat[i] = -1
                        abs_res.flat[i] = log(1 - exp(s - m)) + m
                    elif m < s:
                        #print("m < s")
                        sign_res.flat[i] = 1
                        abs_res.flat[i] = log(1 - exp(m - s)) + s
                else:# sign_m == 1
                    if m > s:
                        #print("m >= s")
                        sign_res.flat[i] = 1
                        abs_res.flat[i] = log(1 - exp(s - m)) + m
                    elif m < s:
                        #print("m < s")
                        sign_res.flat[i] = -1
                        abs_res.flat[i] = log(1 - exp(m - s)) + s
        #print(sign_m*exp(m),  sign_s*exp(s),  sign_m*exp(m) - sign_s*exp(s), sign_res.flat[i] * exp(abs_res.flat[i]))
    
    return (abs_res, sign_res)
开发者ID:ingmarschuster,项目名称:ModelSelection,代码行数:55,代码来源:estimator_statistics.py

示例7: getPsfAtPoints

    def getPsfAtPoints(self, bandnum, x, y):
        '''
        Reconstruct the SDSS model PSF from KL basis functions.

        x,y can be scalars or 1-d numpy arrays.

        Return value:
        if x,y are scalars: a PSF image
        if x,y are arrays:  a list of PSF images
        '''
        rtnscalar = np.isscalar(x) and np.isscalar(y)
        x = np.atleast_1d(x)
        y = np.atleast_1d(y)
        psf = fits_table(self.hdus[bandnum+1].data)
        psfimgs = None
        (outh, outw) = (None,None)

        # From the IDL docs:
        # http://photo.astro.princeton.edu/photoop_doc.html#SDSS_PSF_RECON
        #   acoeff_k = SUM_i{ SUM_j{ (0.001*ROWC)^i * (0.001*COLC)^j * C_k_ij } }
        #   psfimage = SUM_k{ acoeff_k * RROWS_k }
        for k in range(len(psf)):
            nrb = psf.nrow_b[k]
            ncb = psf.ncol_b[k]
            c = psf.c[k].reshape(5, 5)
            c = c[:nrb,:ncb]
            (gridi,gridj) = np.meshgrid(range(nrb), range(ncb))

            if psfimgs is None:
                psfimgs = [np.zeros_like(psf.rrows[k]) for xy
                        in np.broadcast(x,y)]
                (outh,outw) = (psf.rnrow[k], psf.rncol[k])
            else:
                assert(psf.rnrow[k] == outh)
                assert(psf.rncol[k] == outw)

            for i,(xi,yi) in enumerate(np.broadcast(x,y)):
                #print 'xi,yi', xi,yi
                acoeff_k = np.sum(((0.001 * xi)**gridi * (0.001 * yi)**gridj * c))
                if False: # DEBUG
                    print 'coeffs:', (0.001 * xi)**gridi * (0.001 * yi)**gridj
                    print 'c:', c
                    for (coi,ci) in zip(((0.001 * xi)**gridi * (0.001 * yi)**gridj).ravel(), c.ravel()):
                        print 'co %g, c %g' % (coi,ci)
                    print 'acoeff_k', acoeff_k

                #print 'acoeff_k', acoeff_k.shape, acoeff_k
                #print 'rrows[k]', psf.rrows[k].shape, psf.rrows[k]
                psfimgs[i] += acoeff_k * psf.rrows[k]

        psfimgs = [img.reshape((outh,outw)) for img in psfimgs]
        if rtnscalar:
            return psfimgs[0]
        return psfimgs
开发者ID:astrometry,项目名称:pysdss,代码行数:54,代码来源:common.py

示例8: test_mean_sigma_keepdims

def test_mean_sigma_keepdims(axis):
    np.random.seed(0)
    a = np.random.random((4, 5, 6))
    mu1, sigma1 = mean_sigma(a, axis, keepdims=False)
    mu2, sigma2 = mean_sigma(a, axis, keepdims=True)

    assert_array_equal(mu1.ravel(), mu2.ravel())
    assert_array_equal(sigma1.ravel(), sigma2.ravel())

    assert_array_equal(np.broadcast(a, mu2).shape, a.shape)
    assert_array_equal(np.broadcast(a, sigma2).shape, a.shape)
开发者ID:astroML,项目名称:astroML,代码行数:11,代码来源:test_stats.py

示例9: _assert_incompatible_broadcast

 def _assert_incompatible_broadcast(self, shape1, shape2):
   if shape1.dims is not None and shape2.dims is not None:
     zeros1 = np.zeros(shape1.as_list())
     zeros2 = np.zeros(shape2.as_list())
     with self.assertRaises(ValueError):
       np.broadcast(zeros1, zeros2)
     with self.assertRaises(ValueError):
       np.broadcast(zeros2, zeros1)
   with self.assertRaises(ValueError):
     common_shapes.broadcast_shape(shape1, shape2)
   with self.assertRaises(ValueError):
     common_shapes.broadcast_shape(shape2, shape1)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:12,代码来源:common_shapes_test.py

示例10: test_broadcastable

def test_broadcastable():
    for ndim1 in range(1, 4):
        for ndim2 in range(1, 4):
            for shape1 in itertools.permutations(range(1, 4), ndim1):
                for shape2 in itertools.permutations(range(1, 4), ndim2):
                    try:
                        np.broadcast(np.zeros(shape1),
                                     np.zeros(shape2))
                        result = True
                    except ValueError:
                        result = False
                    assert result == broadcastable(shape1, shape2)
开发者ID:jmcq,项目名称:SciDB-Py,代码行数:12,代码来源:test_utils.py

示例11: _set_flags

 def _set_flags(self, value):
     if value is not None:
         if isinstance(value, np.ndarray):
             try:
                 np.broadcast(self.data, value)
             except ValueError:
                 raise ValueError("dimensions of `flags` do not match data")
             else:
                 self._flags = value
         else:
             raise TypeError("`flags` should be a Numpy array")
     else:
         self._flags = value
开发者ID:fgrollier,项目名称:astropy,代码行数:13,代码来源:nddata.py

示例12: __init__

    def __init__(self, w, mu, *args, **kwargs):
        _, sd = get_tau_sd(tau=kwargs.pop('tau', None),
                           sd=kwargs.pop('sd', None))

        distshape = np.broadcast(mu, sd).shape
        self.mu = mu = tt.as_tensor_variable(mu)
        self.sd = sd = tt.as_tensor_variable(sd)

        if not distshape:
            distshape = np.broadcast(mu.tag.test_value, sd.tag.test_value).shape

        super(NormalMixture, self).__init__(w, Normal.dist(mu, sd=sd, shape=distshape),
                                            *args, **kwargs)
开发者ID:mwibrow,项目名称:pymc3,代码行数:13,代码来源:mixture.py

示例13: near

 def near(x, l, h):
     #RESULT: array(3) & array([3, 4])
     a = broadcast(x,l,h)
     has_iterable = a.shape
     x,l,h = tuple(atleast_1d(i) for i in (x,l,h))
     b = broadcast(x,l,h)
     _x,_l,_h = (empty(b.shape), empty(b.shape), empty(b.shape))
     _x.flat = [i for i in x]
     _l.flat = [i for i in l]
     _h.flat = [i for i in h]
     result = asarray(map(_near, x, l, h))
     if not has_iterable:
         result = asarray(result[0])
     return result
开发者ID:agamdua,项目名称:mystic,代码行数:14,代码来源:constraints.py

示例14: _natural_indices

    def _natural_indices(self):
        """Iterate over all possible (x,y) or (x,y,z) lattice element indices.

        This property is used when constructing distributed cell and material
        paths. Most importantly, the iteration order matches that used on the
        Fortran side.

        """
        if self.ndim == 2:
            nx, ny = self.shape
            return np.broadcast(*np.ogrid[:nx, :ny])
        else:
            nx, ny, nz = self.shape
            return np.broadcast(*np.ogrid[:nx, :ny, :nz])
开发者ID:mit-crpg,项目名称:openmc,代码行数:14,代码来源:lattice.py

示例15: _assert_broadcast

 def _assert_broadcast(self, expected, shape1, shape2):
   if shape1.dims is not None and shape2.dims is not None:
     expected_np = expected.as_list()
     zeros1 = np.zeros(shape1.as_list())
     zeros2 = np.zeros(shape2.as_list())
     self.assertAllEqual(expected_np, np.broadcast(zeros1, zeros2).shape)
     self.assertAllEqual(expected_np, np.broadcast(zeros2, zeros1).shape)
     self.assertEqual(
         expected, common_shapes.broadcast_shape(shape1, shape2))
     self.assertEqual(
         expected, common_shapes.broadcast_shape(shape2, shape1))
   else:
     self.assertEqual(expected, common_shapes.broadcast_shape(shape1, shape2))
     self.assertEqual(expected, common_shapes.broadcast_shape(shape2, shape1))
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:14,代码来源:common_shapes_test.py


注:本文中的numpy.broadcast函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。