当前位置: 首页>>代码示例>>Python>>正文


Python numpy.bool8函数代码示例

本文整理汇总了Python中numpy.bool8函数的典型用法代码示例。如果您正苦于以下问题:Python bool8函数的具体用法?Python bool8怎么用?Python bool8使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了bool8函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_invalid

    def test_invalid(self):
        prop = bcpp.Int()

        assert not prop.is_valid(0.0)
        assert not prop.is_valid(1.0)
        assert not prop.is_valid(1.0+1.0j)
        assert not prop.is_valid("")
        assert not prop.is_valid(())
        assert not prop.is_valid([])
        assert not prop.is_valid({})
        assert not prop.is_valid(_TestHasProps())
        assert not prop.is_valid(_TestModel())

        assert not prop.is_valid(np.bool8(False))
        assert not prop.is_valid(np.bool8(True))
        assert not prop.is_valid(np.float16(0))
        assert not prop.is_valid(np.float16(1))
        assert not prop.is_valid(np.float32(0))
        assert not prop.is_valid(np.float32(1))
        assert not prop.is_valid(np.float64(0))
        assert not prop.is_valid(np.float64(1))
        assert not prop.is_valid(np.complex64(1.0+1.0j))
        assert not prop.is_valid(np.complex128(1.0+1.0j))
        if hasattr(np, "complex256"):
            assert not prop.is_valid(np.complex256(1.0+1.0j))
开发者ID:jakirkham,项目名称:bokeh,代码行数:25,代码来源:test_primitive.py

示例2: test_valid

    def test_valid(self):
        prop = bcpp.Bool()

        assert prop.is_valid(None)

        assert prop.is_valid(False)
        assert prop.is_valid(True)

        assert prop.is_valid(np.bool8(False))
        assert prop.is_valid(np.bool8(True))
开发者ID:jakirkham,项目名称:bokeh,代码行数:10,代码来源:test_primitive.py

示例3: main

def main():
    cap = cv2.VideoCapture(0)
    prev_grey_frame = None
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        grey = np.uint8(np.mean(frame, axis=2))

        ch = 0xFF & cv2.waitKey(5)
        if ch == 27:
            break
        if prev_grey_frame is not None:
            flow = cv2.calcOpticalFlowFarneback(prev_grey_frame, grey,
                    pyr_scale=0.5, levels=3, winsize=15,
                    iterations=3, poly_n=5, poly_sigma=1.2, flags=0)
            mag_flow = np.uint8(np.sum(np.abs(5 * flow), axis=2))
            mask_flow = np.uint8(255 * (mag_flow > 50))
            mask_flow = cv2.dilate(mask_flow,
                            cv2.getStructuringElement(cv2.MORPH_RECT,(15,15)))
            vis_frame = frame.copy()

            fx, fy = flow[:, :, 0], flow[:, :, 1]

            for contour in cv2.findContours(mask_flow,
                                            cv2.cv.CV_RETR_EXTERNAL,
                                            cv2.cv.CV_CHAIN_APPROX_SIMPLE)[0]:
                rect = cv2.minAreaRect(contour)
                center, size, _ = rect
                if np.min(size) < 100:
                    continue

                cur_mask = np.zeros(grey.shape)
                cv2.drawContours(cur_mask, [contour], 0, 255, -1)
                mean_fx = np.mean(fx[np.bool8(cur_mask)])
                mean_fy = np.mean(fy[np.bool8(cur_mask)])
                p2 = (int(center[0] + mean_fx * 10),
                      int(center[1] + mean_fy * 10))
                cv2.line(vis_frame, (int(center[0]), int(center[1])),
                         p2, (0, 255, 0))

                box = cv2.cv.BoxPoints(rect)
                box = np.int0(box)
                for i in xrange(len(box)):
                    cv2.line(vis_frame, tuple(box[i - 1]),
                             tuple(box[i]), (0, 0, 255), 2)



            cv2.imshow('mag_flow', vis_frame)


        prev_grey_frame = grey.copy()
开发者ID:ansgri,项目名称:rsdt-tasks,代码行数:53,代码来源:obj_from_motion.py

示例4: test_Bool

    def test_Bool(self):
        prop = Bool()

        self.assertTrue(prop.is_valid(None))
        self.assertTrue(prop.is_valid(False))
        self.assertTrue(prop.is_valid(True))
        self.assertFalse(prop.is_valid(0))
        self.assertFalse(prop.is_valid(1))
        self.assertFalse(prop.is_valid(0.0))
        self.assertFalse(prop.is_valid(1.0))
        self.assertFalse(prop.is_valid(1.0 + 1.0j))
        self.assertFalse(prop.is_valid(""))
        self.assertFalse(prop.is_valid(()))
        self.assertFalse(prop.is_valid([]))
        self.assertFalse(prop.is_valid({}))
        self.assertFalse(prop.is_valid(Foo()))

        try:
            import numpy as np

            self.assertTrue(prop.is_valid(np.bool8(False)))
            self.assertTrue(prop.is_valid(np.bool8(True)))
            self.assertFalse(prop.is_valid(np.int8(0)))
            self.assertFalse(prop.is_valid(np.int8(1)))
            self.assertFalse(prop.is_valid(np.int16(0)))
            self.assertFalse(prop.is_valid(np.int16(1)))
            self.assertFalse(prop.is_valid(np.int32(0)))
            self.assertFalse(prop.is_valid(np.int32(1)))
            self.assertFalse(prop.is_valid(np.int64(0)))
            self.assertFalse(prop.is_valid(np.int64(1)))
            self.assertFalse(prop.is_valid(np.uint8(0)))
            self.assertFalse(prop.is_valid(np.uint8(1)))
            self.assertFalse(prop.is_valid(np.uint16(0)))
            self.assertFalse(prop.is_valid(np.uint16(1)))
            self.assertFalse(prop.is_valid(np.uint32(0)))
            self.assertFalse(prop.is_valid(np.uint32(1)))
            self.assertFalse(prop.is_valid(np.uint64(0)))
            self.assertFalse(prop.is_valid(np.uint64(1)))
            self.assertFalse(prop.is_valid(np.float16(0)))
            self.assertFalse(prop.is_valid(np.float16(1)))
            self.assertFalse(prop.is_valid(np.float32(0)))
            self.assertFalse(prop.is_valid(np.float32(1)))
            self.assertFalse(prop.is_valid(np.float64(0)))
            self.assertFalse(prop.is_valid(np.float64(1)))
            self.assertFalse(prop.is_valid(np.complex64(1.0 + 1.0j)))
            self.assertFalse(prop.is_valid(np.complex128(1.0 + 1.0j)))
            self.assertFalse(prop.is_valid(np.complex256(1.0 + 1.0j)))
        except ImportError:
            pass
开发者ID:Jessime,项目名称:bokeh,代码行数:49,代码来源:test_properties.py

示例5: regions

def regions(img):
    '''
    CURRENTLY (6pm 8 Aug): 
    
    To fix: ksize (and maybe iterations) based on big image. Need to make it work for resized
            or else adaptive to img size. Maybe compare current ksize to length
            original (non-resized vals ksize1=15, iterations=30, ksize=41)
            #update: reduced values, still not adaptive
            
            #Also: thresh value in threshold also not adaptive but works for now
    
    '''
    img_copy = img[:].copy()
    #eroded = cv2.erode(img, None, iterations=10)
    gam = gamma(img, 2.2)
    blur = cv2.GaussianBlur(src=gam, dst=img_copy, ksize=(3, 3), sigmaX=0, 
                            sigmaY=0)
    eroded = cv2.dilate(blur, None, iterations=1)
    #gam = gamma(eroded, 2)
    blur2 = cv2.GaussianBlur(src=eroded, dst=img_copy, ksize=(9,9), sigmaX=0,
                             sigmaY=0)
    thresh_val = np.int(np.mean(blur2))
    ret, threshold_data = cv2.threshold(blur2, 50, 255, cv2.THRESH_BINARY)
    #threshold_data = cv2.adaptiveThreshold(blur2, 255,
                                           #cv2.ADAPTIVE_THRESH_MEAN_C,
                                           #cv2.THRESH_BINARY, 301, 2)                         
    #Create two masked images, one that masks out darker areas, one masks light
    boole = np.bool8(threshold_data)
    light_img = boole * img
    dark_img = img * np.uint8(boole == 0)

    return light_img, dark_img
开发者ID:polar-computing,项目名称:3DSeals,代码行数:32,代码来源:region_extract.py

示例6: filterPrepare

 def filterPrepare(self, e, data, keys, ndata, events):
     import numpy as np
     import pyopencl as cl
     mf = cl.mem_flags
     
     ndata = data.size
     if keys.size != ndata: raise Exception()
     
     filtbytes = np.bool8(False).nbytes * ndata
     
     if not isinstance(data, cl.Buffer):
         data_buf = cl.Buffer(self.ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf= data)
     else:
         data_buf = data
     
     if not isinstance(keys, cl.Buffer):
         keys_buf = cl.Buffer(self.ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf= keys)
     else:
         keys_buf = keys
     
     filt_buf = cl.Buffer(self.ctx, mf.READ_WRITE, filtbytes)
     
     kernel = self.prg.filterPrepare
     kernel.set_args(data_buf, keys_buf, np.uint64(ndata), np.uint8(33), np.uint8(66), filt_buf)
     global_dims = self.get_global(self.get_grid_dims(ndata))
     
     print "filterPrepare"
     if e is None:
         e  = [ cl.enqueue_nd_range_kernel(self.queue, kernel, global_dims, self.localDims), ]
     else:
         e  = [ cl.enqueue_nd_range_kernel(self.queue, kernel, global_dims, self.localDims, wait_for=e), ]
     events += e
     
     return (e, data_buf, keys_buf, filt_buf)
开发者ID:Kobtul,项目名称:documents,代码行数:34,代码来源:filter.py

示例7: testDefaultFlatAndBackNonIdentical

    def testDefaultFlatAndBackNonIdentical(self):
        """
        Test flattening/unflattening of objects which change type.

        No type requirements are given in these tests. In other words, we allow
        pylabrad to choose a default type for flattening.

        In this test, we do not expect A == unflatten(*flatten(A)). This is
        mostly because list of numbers, both with an without units, should
        unflatten to ndarray or ValueArray, rather than actual python lists.
        """

        def compareValueArrays(a, b):
            """I check near equality of two ValueArrays"""
            self.assertTrue(a.allclose(b))

        tests = [
            ([1, 2, 3], np.array([1, 2, 3], dtype="int32"), np.testing.assert_array_equal),
            ([1.1, 2.2, 3.3], np.array([1.1, 2.2, 3.3], dtype="float64"), np.testing.assert_array_almost_equal),
            (np.array([3, 4], dtype="int32"), np.array([3, 4], dtype="int32"), np.testing.assert_array_equal),
            (np.array([1.2, 3.4]), np.array([1.2, 3.4]), np.testing.assert_array_almost_equal),
            ([Value(1.0, "m"), Value(3.0, "m")], ValueArray([1.0, 3.0], "m"), compareValueArrays),
            ([Value(1.0, "m"), Value(10, "cm")], ValueArray([1.0, 0.1], "m"), compareValueArrays),
            (ValueArray([1, 2], "Hz"), ValueArray([1, 2], "Hz"), compareValueArrays),
            (ValueArray([1.0, 2], ""), np.array([1.0, 2]), np.testing.assert_array_almost_equal),
            # Numpy scalar types
            (np.bool8(True), True, self.assertEqual),
        ]
        for input, expected, comparison_func in tests:
            unflat = T.unflatten(*T.flatten(input))
            if isinstance(unflat, np.ndarray):
                self.assertEqual(unflat.dtype, expected.dtype)
            comparison_func(unflat, expected)
开发者ID:ckometter,项目名称:pylabrad,代码行数:33,代码来源:test_types.py

示例8: test_int

 def test_int(self):
     self.assert_equal_with_lambda_check(_flexible_type(1), 1)
     self.assert_equal_with_lambda_check(_flexible_type(1L), 1)
     self.assert_equal_with_lambda_check(_flexible_type(True), 1)
     self.assert_equal_with_lambda_check(_flexible_type(False), 0)
     # numpy types
     self.assert_equal_with_lambda_check(_flexible_type(np.int_(1)), 1)
     self.assert_equal_with_lambda_check(_flexible_type(np.int64(1)), 1)
     self.assert_equal_with_lambda_check(_flexible_type(np.int32(1)), 1)
     self.assert_equal_with_lambda_check(_flexible_type(np.int16(1)), 1)
     self.assert_equal_with_lambda_check(_flexible_type(np.uint64(1)), 1)
     self.assert_equal_with_lambda_check(_flexible_type(np.uint32(1)), 1)
     self.assert_equal_with_lambda_check(_flexible_type(np.uint16(1)), 1)
     self.assert_equal_with_lambda_check(_flexible_type(np.bool(1)), 1)
     self.assert_equal_with_lambda_check(_flexible_type(np.bool(0)), 0)
     self.assert_equal_with_lambda_check(_flexible_type(np.bool_(1)), 1)
     self.assert_equal_with_lambda_check(_flexible_type(np.bool_(0)), 0)
     self.assert_equal_with_lambda_check(_flexible_type(np.bool8(1)), 1)
     self.assert_equal_with_lambda_check(_flexible_type(np.bool8(0)), 0)
开发者ID:andreacrescini,项目名称:SFrame,代码行数:19,代码来源:test_flexible_type.py

示例9: toNumpyScalar

def toNumpyScalar(num, dtype=None):
  ''' convert a Python number to an equivalent Numpy scalar type '''
  if isinstance(dtype,np.dtype): 
    num = dtype.type(num)
  else:  
    if isinstance(num, float): num = np.float64(num)
    elif isinstance(num, int): num = np.int64(num)
    elif isinstance(num, bool): num = np.bool8(num)
    else: raise NotImplementedError(num)
  return num
开发者ID:xiefengy,项目名称:GeoPy,代码行数:10,代码来源:misc.py

示例10: back_extract

def back_extract (img):

    gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    trash = gray_img[:].copy()    
    eq_img = cv2.equalizeHist(src=gray_img, dst=trash)
    gammed = gamma(eq_img, gamma=15)
    blur = gammed
    cv2.GaussianBlur(src=gammed, dst=blur, ksize=(35,35), sigmaX=0, sigmaY=0 )         
    cont = cv2.findContours(blur, cv2.RETR_EXTERNAL,
           cv2.CHAIN_APPROX_SIMPLE)[-2]
    areaArray = []
    for i, c in enumerate(cont):
        area = cv2.contourArea(c)
        areaArray.append(area)
    sorteddata = sorted(zip(areaArray, cont), key = lambda x: x[0], 
                        reverse=True)
    largest1 = sorteddata[0][1]
    points1 = np.array([point[0] for point in largest1])
    points2 = [0,0]
    if len(sorteddata) > 1 : #Some images don't have 2 segments 
        largest2 = sorteddata[1][1]
        points2 = np.array([point[0] for point in largest2])
    else: largest2 = np.asarray((0,0))
    blank = np.zeros(shape = gray_img.shape)
    if len(points2) > 2 : #If there're two segments
        filled = cv2.fillPoly(blank, [points1, points2], 1)
    else:
        filled = cv2.fillPoly(blank, [points1], 1)
    boole = ~np.bool8(filled) #inverts so background is 0
    boole = np.uint8(boole)
    masked = gray_img*boole
        ######## Secondary: GrabCut

    mask = np.zeros(img.shape[:2],np.uint8)
    
    bgdModel = np.zeros((1,65),np.float64)
    fgdModel = np.zeros((1,65),np.float64)
    
    rect = (0,0,img.shape[1]-1, len(img)-1)
    
    cv2.grabCut(img,mask,rect,bgdModel,fgdModel,2,cv2.GC_INIT_WITH_RECT)
    mask2 = np.where((mask==2)|(mask==0),0,1).astype('uint8')
    masked2 = img*mask2[:,:,np.newaxis]
    masked2 = cv2.cvtColor(masked2, cv2.COLOR_BGR2GRAY)
    masked = masked2*boole
    
    # Find how much white there is. Integrates into inversion decision later 
    how_mask = masked.size - np.count_nonzero(masked)
    
    cv2.imshow("masked img", masked)  
    cv2.waitKey(0)
    cv2.destroyAllWindows()    
    return masked, how_mask
开发者ID:polar-computing,项目名称:3DSeals,代码行数:53,代码来源:back_extract.py

示例11: _read_image

 def _read_image(name):
     """Read an image from a file_handle"""
     if name == "image":
         if file_handle["phased"][0]:
             image = _numpy.squeeze(file_handle['real'][...] + 1.j*file_handle['imag'][...])
         else:
             image = _numpy.real(_numpy.squeeze(file_handle['real'][...]))
     elif name == "mask":
         image = _numpy.bool8(_numpy.squeeze(file_handle["mask"][...]))
     else:
         raise ValueError("Can not load {0}.".format(name))
     return image
开发者ID:ekeberg,项目名称:Python-tools,代码行数:12,代码来源:sphelper.py

示例12: execute

def execute(positions, num_particles, num_frames):
    #Get host positions:
    cpuPos = numpy.array(positions, dtype=numpy.float32)
    #Allocate position space on device:
    devPos = cuda.mem_alloc(cpuPos.nbytes)
    #Copy positions:
    cuda.memcpy_htod(devPos, cpuPos)
    
    #Allocate device velocities:
    devVels = cuda.mem_alloc(2 * num_particles * numpy.float32().nbytes)
    cuda.memset_d32(devVels, 0, 2 * num_particles)
    # #Copy velocities:
    # cuda.memcpy_htod(devVels, cpuVels)
    
    #Allocate and initialize device in bounds to false:
    #inBounds = numpy.zeros(num_particles, dtype=bool)
    devInBounds = cuda.mem_alloc(num_particles * numpy.bool8().nbytes)
    cuda.memset_d8(devInBounds, True, num_particles)
    
    # inB = numpy.zeros(num_particles, dtype=numpy.bool)
    # cuda.memcpy_dtoh(inB, devInBounds)
    # print inB
    
    # cuda.memcpy_htod(devInBounds, inBounds)
    # numBlocks = 1#(num_particles // 512) + 1;
    grid_dim = ((num_particles // NUM_THREADS) + 1, 1)
    print grid_dim
    runframe = module.get_function("runframe")
    frames = [None] * num_frames
    for i in range(num_frames):
        runframe(devPos, devVels, devInBounds, 
                 numpy.int32(num_particles),
                 grid=grid_dim,
                 block=(NUM_THREADS, 1, 1))
        #Get the positions from device:
        cuda.memcpy_dtoh(cpuPos, devPos)
        frames[i] = cpuPos.copy()
        #frames[i] = copy(cpuPos)
        #write_frame(out, cpuPos, num_particles)
    
    #Simulation destination file:
    # out = open(OUTPUT_FILE, 'w')
    # write_header(out, num_particles)
    # for frame in frames:
    #     write_frame(out, frame, num_particles)
    
    #clean up...
    #out.close()
    devPos.free()
    devVels.free()
    devInBounds.free()
开发者ID:rbpittman,项目名称:CUDA,代码行数:51,代码来源:gpuSimulator.py

示例13: dft_2d_masked

def dft_2d_masked(y_side, x_side, mask_real, mask_fourier):
    """
    The dft matrix that is returnd works on complex vectors
    and returns a complex vector. Data is stored consistent with
    numpys flatten(). Only the cols and rows corresponding to pixels
    in the real and Fourier mask respectively are calculated.
    """
    o_1 = _numpy.exp(-2.0j * _numpy.pi / y_side)
    o_2 = _numpy.exp(-2.0j * _numpy.pi / x_side)
    i = _numpy.zeros(x_side * y_side)
    j = _numpy.zeros(x_side * y_side)
    for k in xrange(y_side):
        j[x_side * k : x_side * (k + 1)] = _numpy.arange(x_side)
    for k in xrange(x_side):
        i[k::x_side] = _numpy.arange(y_side)
    i_mask_real = i[_numpy.bool8(mask_real.flatten())]
    i_mask_fourier = i[_numpy.bool8(mask_fourier.flatten())]
    j_mask_real = j[_numpy.bool8(mask_real.flatten())]
    j_mask_fourier = j[_numpy.bool8(mask_fourier.flatten())]
    dft = o_1 ** (i_mask_real[:, _numpy.newaxis] * i_mask_fourier[_numpy.newaxis, :]) * o_2 ** (
        j_mask_real[:, _numpy.newaxis] * j_mask_fourier[_numpy.newaxis, :]
    )
    return dft
开发者ID:ekeberg,项目名称:Python-tools,代码行数:23,代码来源:dft.py

示例14: process

    def process(self, src, **kwargs):
        sw = SW('Optical Flow')
        
        frame_gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
        p0 = self.p0

        # calculate optical flow
        p1, st, err = cv2.calcOpticalFlowPyrLK(self.old_gray, frame_gray, p0, None, 
                                               winSize  = (15,15),
                                               maxLevel = 2,
                                               criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
        
        # Select good points
        good_new = p1[st==1]
        good_old = p0[st==1]
        rstmsk = np.zeros(good_new.shape[0], dtype=np.bool8)

        for i,pt in enumerate(good_new):
            rstmsk[i] = np.bool8(math.sqrt((pt[0]-self.center.x)**2+(pt[1]-self.center.y)**2)<=(self.radius+SELECTPADDING))
        
        good_new = good_new[rstmsk]
        good_old = good_old[rstmsk]
        
        if (good_new.shape[0]*2)<self.nump0:
            raise OpticalFlow.ObjectMissError
        
        tmp = np.average(good_new, axis=0)
        self.center = util.Point(int(tmp[0]),int(tmp[1]))
        
        dst = src.copy()
        
        try:
            self.oflines # 光流轨迹线
        except AttributeError:
            self.oflines = np.zeros_like(src, dtype=np.uint8)
        
        for n,o in zip(good_new, good_old):
            cv2.circle(dst,tuple(n),3,OBJECT_MATCH_COLOR,-1)# filled circle
            cv2.line(self.oflines,tuple(n),tuple(o),OBJECT_MATCH_COLOR,3)# line
        self.old_gray = frame_gray
        self.p0 = good_new.reshape(-1,1,2)
        
        sw.stop()
        return dst, [self.center], cv2.add(self.oflines,src)
开发者ID:dalinhuang,项目名称:GroundStation,代码行数:44,代码来源:ObjectTracking.py

示例15: radial_average

def radial_average(image, mask=None):
    """Calculates the radial average of an array of any shape,
    the center is assumed to be at the physical center."""
    if mask is None:
        mask = _numpy.ones(image.shape, dtype="bool8")
    else:
        mask = _numpy.bool8(mask)
    axis_values = [_numpy.arange(l) - l / 2.0 + 0.5 for l in image.shape]
    radius = _numpy.zeros((image.shape[-1]))
    for i in range(len(image.shape)):
        radius = radius + (axis_values[-(1 + i)][(slice(0, None),) + (_numpy.newaxis,) * i]) ** 2
    radius = _numpy.int32(_numpy.sqrt(radius))
    number_of_bins = radius[mask].max() + 1
    radial_sum = _numpy.zeros(number_of_bins)
    weight = _numpy.zeros(number_of_bins)
    for value, this_radius in zip(image[mask], radius[mask]):
        radial_sum[this_radius] += value
        weight[this_radius] += 1.0
    radial_sum[weight > 0] /= weight[weight > 0]
    radial_sum[weight == 0] = _numpy.nan
    return radial_sum
开发者ID:ekeberg,项目名称:Python-tools,代码行数:21,代码来源:tools.py


注:本文中的numpy.bool8函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。