本文整理汇总了Python中numpy.bool8函数的典型用法代码示例。如果您正苦于以下问题:Python bool8函数的具体用法?Python bool8怎么用?Python bool8使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了bool8函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_invalid
def test_invalid(self):
prop = bcpp.Int()
assert not prop.is_valid(0.0)
assert not prop.is_valid(1.0)
assert not prop.is_valid(1.0+1.0j)
assert not prop.is_valid("")
assert not prop.is_valid(())
assert not prop.is_valid([])
assert not prop.is_valid({})
assert not prop.is_valid(_TestHasProps())
assert not prop.is_valid(_TestModel())
assert not prop.is_valid(np.bool8(False))
assert not prop.is_valid(np.bool8(True))
assert not prop.is_valid(np.float16(0))
assert not prop.is_valid(np.float16(1))
assert not prop.is_valid(np.float32(0))
assert not prop.is_valid(np.float32(1))
assert not prop.is_valid(np.float64(0))
assert not prop.is_valid(np.float64(1))
assert not prop.is_valid(np.complex64(1.0+1.0j))
assert not prop.is_valid(np.complex128(1.0+1.0j))
if hasattr(np, "complex256"):
assert not prop.is_valid(np.complex256(1.0+1.0j))
示例2: test_valid
def test_valid(self):
prop = bcpp.Bool()
assert prop.is_valid(None)
assert prop.is_valid(False)
assert prop.is_valid(True)
assert prop.is_valid(np.bool8(False))
assert prop.is_valid(np.bool8(True))
示例3: main
def main():
cap = cv2.VideoCapture(0)
prev_grey_frame = None
while True:
ret, frame = cap.read()
if not ret:
break
grey = np.uint8(np.mean(frame, axis=2))
ch = 0xFF & cv2.waitKey(5)
if ch == 27:
break
if prev_grey_frame is not None:
flow = cv2.calcOpticalFlowFarneback(prev_grey_frame, grey,
pyr_scale=0.5, levels=3, winsize=15,
iterations=3, poly_n=5, poly_sigma=1.2, flags=0)
mag_flow = np.uint8(np.sum(np.abs(5 * flow), axis=2))
mask_flow = np.uint8(255 * (mag_flow > 50))
mask_flow = cv2.dilate(mask_flow,
cv2.getStructuringElement(cv2.MORPH_RECT,(15,15)))
vis_frame = frame.copy()
fx, fy = flow[:, :, 0], flow[:, :, 1]
for contour in cv2.findContours(mask_flow,
cv2.cv.CV_RETR_EXTERNAL,
cv2.cv.CV_CHAIN_APPROX_SIMPLE)[0]:
rect = cv2.minAreaRect(contour)
center, size, _ = rect
if np.min(size) < 100:
continue
cur_mask = np.zeros(grey.shape)
cv2.drawContours(cur_mask, [contour], 0, 255, -1)
mean_fx = np.mean(fx[np.bool8(cur_mask)])
mean_fy = np.mean(fy[np.bool8(cur_mask)])
p2 = (int(center[0] + mean_fx * 10),
int(center[1] + mean_fy * 10))
cv2.line(vis_frame, (int(center[0]), int(center[1])),
p2, (0, 255, 0))
box = cv2.cv.BoxPoints(rect)
box = np.int0(box)
for i in xrange(len(box)):
cv2.line(vis_frame, tuple(box[i - 1]),
tuple(box[i]), (0, 0, 255), 2)
cv2.imshow('mag_flow', vis_frame)
prev_grey_frame = grey.copy()
示例4: test_Bool
def test_Bool(self):
prop = Bool()
self.assertTrue(prop.is_valid(None))
self.assertTrue(prop.is_valid(False))
self.assertTrue(prop.is_valid(True))
self.assertFalse(prop.is_valid(0))
self.assertFalse(prop.is_valid(1))
self.assertFalse(prop.is_valid(0.0))
self.assertFalse(prop.is_valid(1.0))
self.assertFalse(prop.is_valid(1.0 + 1.0j))
self.assertFalse(prop.is_valid(""))
self.assertFalse(prop.is_valid(()))
self.assertFalse(prop.is_valid([]))
self.assertFalse(prop.is_valid({}))
self.assertFalse(prop.is_valid(Foo()))
try:
import numpy as np
self.assertTrue(prop.is_valid(np.bool8(False)))
self.assertTrue(prop.is_valid(np.bool8(True)))
self.assertFalse(prop.is_valid(np.int8(0)))
self.assertFalse(prop.is_valid(np.int8(1)))
self.assertFalse(prop.is_valid(np.int16(0)))
self.assertFalse(prop.is_valid(np.int16(1)))
self.assertFalse(prop.is_valid(np.int32(0)))
self.assertFalse(prop.is_valid(np.int32(1)))
self.assertFalse(prop.is_valid(np.int64(0)))
self.assertFalse(prop.is_valid(np.int64(1)))
self.assertFalse(prop.is_valid(np.uint8(0)))
self.assertFalse(prop.is_valid(np.uint8(1)))
self.assertFalse(prop.is_valid(np.uint16(0)))
self.assertFalse(prop.is_valid(np.uint16(1)))
self.assertFalse(prop.is_valid(np.uint32(0)))
self.assertFalse(prop.is_valid(np.uint32(1)))
self.assertFalse(prop.is_valid(np.uint64(0)))
self.assertFalse(prop.is_valid(np.uint64(1)))
self.assertFalse(prop.is_valid(np.float16(0)))
self.assertFalse(prop.is_valid(np.float16(1)))
self.assertFalse(prop.is_valid(np.float32(0)))
self.assertFalse(prop.is_valid(np.float32(1)))
self.assertFalse(prop.is_valid(np.float64(0)))
self.assertFalse(prop.is_valid(np.float64(1)))
self.assertFalse(prop.is_valid(np.complex64(1.0 + 1.0j)))
self.assertFalse(prop.is_valid(np.complex128(1.0 + 1.0j)))
self.assertFalse(prop.is_valid(np.complex256(1.0 + 1.0j)))
except ImportError:
pass
示例5: regions
def regions(img):
'''
CURRENTLY (6pm 8 Aug):
To fix: ksize (and maybe iterations) based on big image. Need to make it work for resized
or else adaptive to img size. Maybe compare current ksize to length
original (non-resized vals ksize1=15, iterations=30, ksize=41)
#update: reduced values, still not adaptive
#Also: thresh value in threshold also not adaptive but works for now
'''
img_copy = img[:].copy()
#eroded = cv2.erode(img, None, iterations=10)
gam = gamma(img, 2.2)
blur = cv2.GaussianBlur(src=gam, dst=img_copy, ksize=(3, 3), sigmaX=0,
sigmaY=0)
eroded = cv2.dilate(blur, None, iterations=1)
#gam = gamma(eroded, 2)
blur2 = cv2.GaussianBlur(src=eroded, dst=img_copy, ksize=(9,9), sigmaX=0,
sigmaY=0)
thresh_val = np.int(np.mean(blur2))
ret, threshold_data = cv2.threshold(blur2, 50, 255, cv2.THRESH_BINARY)
#threshold_data = cv2.adaptiveThreshold(blur2, 255,
#cv2.ADAPTIVE_THRESH_MEAN_C,
#cv2.THRESH_BINARY, 301, 2)
#Create two masked images, one that masks out darker areas, one masks light
boole = np.bool8(threshold_data)
light_img = boole * img
dark_img = img * np.uint8(boole == 0)
return light_img, dark_img
示例6: filterPrepare
def filterPrepare(self, e, data, keys, ndata, events):
import numpy as np
import pyopencl as cl
mf = cl.mem_flags
ndata = data.size
if keys.size != ndata: raise Exception()
filtbytes = np.bool8(False).nbytes * ndata
if not isinstance(data, cl.Buffer):
data_buf = cl.Buffer(self.ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf= data)
else:
data_buf = data
if not isinstance(keys, cl.Buffer):
keys_buf = cl.Buffer(self.ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf= keys)
else:
keys_buf = keys
filt_buf = cl.Buffer(self.ctx, mf.READ_WRITE, filtbytes)
kernel = self.prg.filterPrepare
kernel.set_args(data_buf, keys_buf, np.uint64(ndata), np.uint8(33), np.uint8(66), filt_buf)
global_dims = self.get_global(self.get_grid_dims(ndata))
print "filterPrepare"
if e is None:
e = [ cl.enqueue_nd_range_kernel(self.queue, kernel, global_dims, self.localDims), ]
else:
e = [ cl.enqueue_nd_range_kernel(self.queue, kernel, global_dims, self.localDims, wait_for=e), ]
events += e
return (e, data_buf, keys_buf, filt_buf)
示例7: testDefaultFlatAndBackNonIdentical
def testDefaultFlatAndBackNonIdentical(self):
"""
Test flattening/unflattening of objects which change type.
No type requirements are given in these tests. In other words, we allow
pylabrad to choose a default type for flattening.
In this test, we do not expect A == unflatten(*flatten(A)). This is
mostly because list of numbers, both with an without units, should
unflatten to ndarray or ValueArray, rather than actual python lists.
"""
def compareValueArrays(a, b):
"""I check near equality of two ValueArrays"""
self.assertTrue(a.allclose(b))
tests = [
([1, 2, 3], np.array([1, 2, 3], dtype="int32"), np.testing.assert_array_equal),
([1.1, 2.2, 3.3], np.array([1.1, 2.2, 3.3], dtype="float64"), np.testing.assert_array_almost_equal),
(np.array([3, 4], dtype="int32"), np.array([3, 4], dtype="int32"), np.testing.assert_array_equal),
(np.array([1.2, 3.4]), np.array([1.2, 3.4]), np.testing.assert_array_almost_equal),
([Value(1.0, "m"), Value(3.0, "m")], ValueArray([1.0, 3.0], "m"), compareValueArrays),
([Value(1.0, "m"), Value(10, "cm")], ValueArray([1.0, 0.1], "m"), compareValueArrays),
(ValueArray([1, 2], "Hz"), ValueArray([1, 2], "Hz"), compareValueArrays),
(ValueArray([1.0, 2], ""), np.array([1.0, 2]), np.testing.assert_array_almost_equal),
# Numpy scalar types
(np.bool8(True), True, self.assertEqual),
]
for input, expected, comparison_func in tests:
unflat = T.unflatten(*T.flatten(input))
if isinstance(unflat, np.ndarray):
self.assertEqual(unflat.dtype, expected.dtype)
comparison_func(unflat, expected)
示例8: test_int
def test_int(self):
self.assert_equal_with_lambda_check(_flexible_type(1), 1)
self.assert_equal_with_lambda_check(_flexible_type(1L), 1)
self.assert_equal_with_lambda_check(_flexible_type(True), 1)
self.assert_equal_with_lambda_check(_flexible_type(False), 0)
# numpy types
self.assert_equal_with_lambda_check(_flexible_type(np.int_(1)), 1)
self.assert_equal_with_lambda_check(_flexible_type(np.int64(1)), 1)
self.assert_equal_with_lambda_check(_flexible_type(np.int32(1)), 1)
self.assert_equal_with_lambda_check(_flexible_type(np.int16(1)), 1)
self.assert_equal_with_lambda_check(_flexible_type(np.uint64(1)), 1)
self.assert_equal_with_lambda_check(_flexible_type(np.uint32(1)), 1)
self.assert_equal_with_lambda_check(_flexible_type(np.uint16(1)), 1)
self.assert_equal_with_lambda_check(_flexible_type(np.bool(1)), 1)
self.assert_equal_with_lambda_check(_flexible_type(np.bool(0)), 0)
self.assert_equal_with_lambda_check(_flexible_type(np.bool_(1)), 1)
self.assert_equal_with_lambda_check(_flexible_type(np.bool_(0)), 0)
self.assert_equal_with_lambda_check(_flexible_type(np.bool8(1)), 1)
self.assert_equal_with_lambda_check(_flexible_type(np.bool8(0)), 0)
示例9: toNumpyScalar
def toNumpyScalar(num, dtype=None):
''' convert a Python number to an equivalent Numpy scalar type '''
if isinstance(dtype,np.dtype):
num = dtype.type(num)
else:
if isinstance(num, float): num = np.float64(num)
elif isinstance(num, int): num = np.int64(num)
elif isinstance(num, bool): num = np.bool8(num)
else: raise NotImplementedError(num)
return num
示例10: back_extract
def back_extract (img):
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
trash = gray_img[:].copy()
eq_img = cv2.equalizeHist(src=gray_img, dst=trash)
gammed = gamma(eq_img, gamma=15)
blur = gammed
cv2.GaussianBlur(src=gammed, dst=blur, ksize=(35,35), sigmaX=0, sigmaY=0 )
cont = cv2.findContours(blur, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[-2]
areaArray = []
for i, c in enumerate(cont):
area = cv2.contourArea(c)
areaArray.append(area)
sorteddata = sorted(zip(areaArray, cont), key = lambda x: x[0],
reverse=True)
largest1 = sorteddata[0][1]
points1 = np.array([point[0] for point in largest1])
points2 = [0,0]
if len(sorteddata) > 1 : #Some images don't have 2 segments
largest2 = sorteddata[1][1]
points2 = np.array([point[0] for point in largest2])
else: largest2 = np.asarray((0,0))
blank = np.zeros(shape = gray_img.shape)
if len(points2) > 2 : #If there're two segments
filled = cv2.fillPoly(blank, [points1, points2], 1)
else:
filled = cv2.fillPoly(blank, [points1], 1)
boole = ~np.bool8(filled) #inverts so background is 0
boole = np.uint8(boole)
masked = gray_img*boole
######## Secondary: GrabCut
mask = np.zeros(img.shape[:2],np.uint8)
bgdModel = np.zeros((1,65),np.float64)
fgdModel = np.zeros((1,65),np.float64)
rect = (0,0,img.shape[1]-1, len(img)-1)
cv2.grabCut(img,mask,rect,bgdModel,fgdModel,2,cv2.GC_INIT_WITH_RECT)
mask2 = np.where((mask==2)|(mask==0),0,1).astype('uint8')
masked2 = img*mask2[:,:,np.newaxis]
masked2 = cv2.cvtColor(masked2, cv2.COLOR_BGR2GRAY)
masked = masked2*boole
# Find how much white there is. Integrates into inversion decision later
how_mask = masked.size - np.count_nonzero(masked)
cv2.imshow("masked img", masked)
cv2.waitKey(0)
cv2.destroyAllWindows()
return masked, how_mask
示例11: _read_image
def _read_image(name):
"""Read an image from a file_handle"""
if name == "image":
if file_handle["phased"][0]:
image = _numpy.squeeze(file_handle['real'][...] + 1.j*file_handle['imag'][...])
else:
image = _numpy.real(_numpy.squeeze(file_handle['real'][...]))
elif name == "mask":
image = _numpy.bool8(_numpy.squeeze(file_handle["mask"][...]))
else:
raise ValueError("Can not load {0}.".format(name))
return image
示例12: execute
def execute(positions, num_particles, num_frames):
#Get host positions:
cpuPos = numpy.array(positions, dtype=numpy.float32)
#Allocate position space on device:
devPos = cuda.mem_alloc(cpuPos.nbytes)
#Copy positions:
cuda.memcpy_htod(devPos, cpuPos)
#Allocate device velocities:
devVels = cuda.mem_alloc(2 * num_particles * numpy.float32().nbytes)
cuda.memset_d32(devVels, 0, 2 * num_particles)
# #Copy velocities:
# cuda.memcpy_htod(devVels, cpuVels)
#Allocate and initialize device in bounds to false:
#inBounds = numpy.zeros(num_particles, dtype=bool)
devInBounds = cuda.mem_alloc(num_particles * numpy.bool8().nbytes)
cuda.memset_d8(devInBounds, True, num_particles)
# inB = numpy.zeros(num_particles, dtype=numpy.bool)
# cuda.memcpy_dtoh(inB, devInBounds)
# print inB
# cuda.memcpy_htod(devInBounds, inBounds)
# numBlocks = 1#(num_particles // 512) + 1;
grid_dim = ((num_particles // NUM_THREADS) + 1, 1)
print grid_dim
runframe = module.get_function("runframe")
frames = [None] * num_frames
for i in range(num_frames):
runframe(devPos, devVels, devInBounds,
numpy.int32(num_particles),
grid=grid_dim,
block=(NUM_THREADS, 1, 1))
#Get the positions from device:
cuda.memcpy_dtoh(cpuPos, devPos)
frames[i] = cpuPos.copy()
#frames[i] = copy(cpuPos)
#write_frame(out, cpuPos, num_particles)
#Simulation destination file:
# out = open(OUTPUT_FILE, 'w')
# write_header(out, num_particles)
# for frame in frames:
# write_frame(out, frame, num_particles)
#clean up...
#out.close()
devPos.free()
devVels.free()
devInBounds.free()
示例13: dft_2d_masked
def dft_2d_masked(y_side, x_side, mask_real, mask_fourier):
"""
The dft matrix that is returnd works on complex vectors
and returns a complex vector. Data is stored consistent with
numpys flatten(). Only the cols and rows corresponding to pixels
in the real and Fourier mask respectively are calculated.
"""
o_1 = _numpy.exp(-2.0j * _numpy.pi / y_side)
o_2 = _numpy.exp(-2.0j * _numpy.pi / x_side)
i = _numpy.zeros(x_side * y_side)
j = _numpy.zeros(x_side * y_side)
for k in xrange(y_side):
j[x_side * k : x_side * (k + 1)] = _numpy.arange(x_side)
for k in xrange(x_side):
i[k::x_side] = _numpy.arange(y_side)
i_mask_real = i[_numpy.bool8(mask_real.flatten())]
i_mask_fourier = i[_numpy.bool8(mask_fourier.flatten())]
j_mask_real = j[_numpy.bool8(mask_real.flatten())]
j_mask_fourier = j[_numpy.bool8(mask_fourier.flatten())]
dft = o_1 ** (i_mask_real[:, _numpy.newaxis] * i_mask_fourier[_numpy.newaxis, :]) * o_2 ** (
j_mask_real[:, _numpy.newaxis] * j_mask_fourier[_numpy.newaxis, :]
)
return dft
示例14: process
def process(self, src, **kwargs):
sw = SW('Optical Flow')
frame_gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
p0 = self.p0
# calculate optical flow
p1, st, err = cv2.calcOpticalFlowPyrLK(self.old_gray, frame_gray, p0, None,
winSize = (15,15),
maxLevel = 2,
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# Select good points
good_new = p1[st==1]
good_old = p0[st==1]
rstmsk = np.zeros(good_new.shape[0], dtype=np.bool8)
for i,pt in enumerate(good_new):
rstmsk[i] = np.bool8(math.sqrt((pt[0]-self.center.x)**2+(pt[1]-self.center.y)**2)<=(self.radius+SELECTPADDING))
good_new = good_new[rstmsk]
good_old = good_old[rstmsk]
if (good_new.shape[0]*2)<self.nump0:
raise OpticalFlow.ObjectMissError
tmp = np.average(good_new, axis=0)
self.center = util.Point(int(tmp[0]),int(tmp[1]))
dst = src.copy()
try:
self.oflines # 光流轨迹线
except AttributeError:
self.oflines = np.zeros_like(src, dtype=np.uint8)
for n,o in zip(good_new, good_old):
cv2.circle(dst,tuple(n),3,OBJECT_MATCH_COLOR,-1)# filled circle
cv2.line(self.oflines,tuple(n),tuple(o),OBJECT_MATCH_COLOR,3)# line
self.old_gray = frame_gray
self.p0 = good_new.reshape(-1,1,2)
sw.stop()
return dst, [self.center], cv2.add(self.oflines,src)
示例15: radial_average
def radial_average(image, mask=None):
"""Calculates the radial average of an array of any shape,
the center is assumed to be at the physical center."""
if mask is None:
mask = _numpy.ones(image.shape, dtype="bool8")
else:
mask = _numpy.bool8(mask)
axis_values = [_numpy.arange(l) - l / 2.0 + 0.5 for l in image.shape]
radius = _numpy.zeros((image.shape[-1]))
for i in range(len(image.shape)):
radius = radius + (axis_values[-(1 + i)][(slice(0, None),) + (_numpy.newaxis,) * i]) ** 2
radius = _numpy.int32(_numpy.sqrt(radius))
number_of_bins = radius[mask].max() + 1
radial_sum = _numpy.zeros(number_of_bins)
weight = _numpy.zeros(number_of_bins)
for value, this_radius in zip(image[mask], radius[mask]):
radial_sum[this_radius] += value
weight[this_radius] += 1.0
radial_sum[weight > 0] /= weight[weight > 0]
radial_sum[weight == 0] = _numpy.nan
return radial_sum