当前位置: 首页>>代码示例>>Python>>正文


Python numpy.average函数代码示例

本文整理汇总了Python中numpy.average函数的典型用法代码示例。如果您正苦于以下问题:Python average函数的具体用法?Python average怎么用?Python average使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了average函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: mkhist

    def mkhist(fname, xmin, xmax, delta, ihist):
        xdata = []
        if os.path.exists(fname + ".gz"):
            import gzip

            fp = gzip.open(fname + ".gz")
        else:
            fp = open(fname)
        for line in fp:
            time, x = map(float, line.strip().split()[:2])
            xdata.append(x)
        x = np.array(xdata)
        xbins = [xmin + i * delta for i in range(nbin + 1)]
        hist[ihist], edges = np.histogram(x, bins=xbins, range=(xmin, xmax))
        nb_data[ihist] = int(np.sum(hist[ihist, :]))

        print "statistics for timeseries # ", ihist
        print "minx:", "%8.3f" % np.min(x), "maxx:", "%8.3f" % np.max(x)
        print "average x", "%8.3f" % np.average(x), "rms x", "%8.3f" % np.std(x)
        print "statistics for histogram # ", ihist
        print int(np.sum(hist[ihist, :])), "points in the histogram"
        print "average x", "%8.3f" % (
            np.sum([hist[ihist, i] * (edges[i] + edges[i + 1]) / 2 for i in range(nbin)]) / np.sum(hist[ihist])
        )
        print

        var = (
            1.0
            / (nblock * (nblock - 1))
            * np.sum([np.average((x[k : (k + 1) * (len(x) / nblock)] - np.average(x)) ** 2) for k in range(nblock)])
        )
        return var
开发者ID:sunhwan,项目名称:NAMD-replica,代码行数:32,代码来源:mywham.py

示例2: tabular_td_n_online

def tabular_td_n_online(states, actions, generator_class, generator_args, n, alpha):
	gamma = 1
	rms_error = np.zeros(100)
	for i in range(100):
		values = {state: 0 for state in states}
		policies = {state: {action: 1.0/len(actions) for action in actions} for state in states}
		errors = []
		for j in range(10):
			episode_states = []
			rewards = []
			generator = generator_class(*generator_args)
			current_state = generator.state
			while True:
				action, next_state, reward = generator.step(policies, current_state)
				episode_states.append(current_state)
				rewards.append(reward)
				if next_state == None:
					break
				current_state = next_state
			# online returns
			for t, state in enumerate(episode_states):
				returns = 0
				for t_s in range(n):
					if t+t_s < len(episode_states):
						returns += gamma**t_s*rewards[t+t_s]
				if t+n < len(episode_states):
					last_episode_value = values[episode_states[t+n]]
				else:
					last_episode_value = 0
				values[state] += alpha*(returns+last_episode_value-values[state])
			errors.append(np.average([(values[state]-(state+1)/10.0+1)**2 for state in states])**0.5)
		rms_error[i] = np.average(errors)
	return np.average(rms_error)
开发者ID:jaisanliang,项目名称:Machine-Learning,代码行数:33,代码来源:chapter7.py

示例3: testEncodeUnrelatedAreas

  def testEncodeUnrelatedAreas(self):
    """
    assert unrelated areas don"t share bits
    (outside of chance collisions)
    """
    avgThreshold = 0.3

    maxThreshold = 0.12
    overlaps = overlapsForUnrelatedAreas(1499, 37, 5)
    self.assertLess(np.max(overlaps), maxThreshold)
    self.assertLess(np.average(overlaps), avgThreshold)

    maxThreshold = 0.12
    overlaps = overlapsForUnrelatedAreas(1499, 37, 10)
    self.assertLess(np.max(overlaps), maxThreshold)
    self.assertLess(np.average(overlaps), avgThreshold)

    maxThreshold = 0.17
    overlaps = overlapsForUnrelatedAreas(999, 25, 10)
    self.assertLess(np.max(overlaps), maxThreshold)
    self.assertLess(np.average(overlaps), avgThreshold)

    maxThreshold = 0.25
    overlaps = overlapsForUnrelatedAreas(499, 13, 10)
    self.assertLess(np.max(overlaps), maxThreshold)
    self.assertLess(np.average(overlaps), avgThreshold)
开发者ID:mewbak,项目名称:nupic,代码行数:26,代码来源:coordinate_test.py

示例4: average_data

def average_data(data):
    """
    Find mean and std. deviation of data returned by ``simulate``.
    """
    numnodes = data['nodes']
    its = data['its']
    its_mean = numpy.average(its)
    its_std = math.sqrt(numpy.var(its))
    dead = data['dead']
    dead_mean = 100.0*numpy.average(dead)/numnodes
    dead_std = 100.0*math.sqrt(numpy.var(dead))/numnodes
    immune = data['immune']
    immune_mean = 100.0*numpy.average(immune)/numnodes
    immune_std = 100.0*math.sqrt(numpy.var(immune))/numnodes
    max_contam = data['max_contam']
    max_contam_mean = 100.0*numpy.average(max_contam)/numnodes
    max_contam_std = 100.0*math.sqrt(numpy.var(max_contam))/numnodes
    normal = data['normal']
    normal_mean = 100.0*numpy.average(normal)/numnodes
    normal_std = 100.0*math.sqrt(numpy.var(normal))/numnodes
    return {'its': (its_mean, its_std),
            'nodes': numnodes,
            'dead': (dead_mean, dead_std),
            'immune': (immune_mean, immune_std),
            'max_contam': (max_contam_mean, max_contam_std),
            'normal': (normal_mean, normal_std)}
开发者ID:3lectrologos,项目名称:sna,代码行数:26,代码来源:diffuse.py

示例5: get_reference_pt

 def get_reference_pt(self):
     # Reference point for a compound object is the average of all
     # it's contituents reference points
     points = numpy.array([ obj.get_reference_pt() for obj in self.objects ])
     t_ = points.T
     x, y = numpy.average(t_[0]), numpy.average(t_[1])
     return (x, y)
开发者ID:Cadair,项目名称:ginga,代码行数:7,代码来源:CompoundMixin.py

示例6: assign_nearest_nbh

    def assign_nearest_nbh(self, query_doc):

        block_id, query_words, doc_words = query_doc
        query_vector = self.vectorize(query_words)
        doc_vector = self.vectorize(doc_words)
        #distance = emd(query_vector, doc_vector, self.distance_matrix)
        #return block_id, distance

        doc_indices = np.nonzero(doc_vector)[0]
        query_indices = np.nonzero(query_vector)[0]

        query_weights = [self.word_level_idf.get(q_i, 0) for q_i in query_indices]
        doc_weights = [self.word_level_idf.get(d_i, 0) for d_i in doc_indices]

        doc_centroid = np.average([self.embedding.model[self.reverse_vocab[i]] for i in doc_indices], axis=0,
                                  weights=doc_weights)
        query_centroid = np.average([self.embedding.model[self.reverse_vocab[i]] for i in query_indices], axis=0,
                                    weights=query_weights)

        # sklearn euclidean distances may not be a symmetric matrix, so taking
        # average of the two entries
        dist_arr = np.array([[(self.distance_matrix[w_i, q_j] + self.distance_matrix[q_j, w_i]) / 2
                              for w_i in doc_indices] for q_j in query_indices])

        label_assignment = np.argmin(dist_arr, axis=1)
        label_assignment = [(index, l) for index, l in enumerate(label_assignment)]

        distances = [dist_arr[(i,e)] * self.word_level_idf.get(query_indices[i], 1) for i, e in label_assignment]

        distance = (1 - self.alpha) * np.sum(distances) + \
                   self.alpha * sp.spatial.distance.cosine(doc_centroid,query_centroid)
        return block_id, distance
开发者ID:subhadeepmaji,项目名称:ml_algorithms,代码行数:32,代码来源:WordMover.py

示例7: calc_precision_recall_fmeasure

 def calc_precision_recall_fmeasure(self):
     """ Computes Precision, Recall, F-measure and Support """
     
     #  precision, recall, F-measure and support for each class for a given thresholds
     for threshold in [10, 30, 50]:
         result = precision_recall_fscore_support(self.y_true, prediction_to_binary(self.y_pred, threshold))
         self.scores['Precision ' + str(threshold) + '%'] = result[0]
         self.scores['Recall ' + str(threshold) + '%'] = result[1]
         self.scores['F-score ' + str(threshold) + '%'] = result[2]
         self.scores['Support'] = result[3]
        
     # Computes precision-recall pairs for different probability thresholds
     self.precision, self.recall, self.thresholds = precision_recall_curve(self.y_true, self.y_pred)    
     #print "precision = " + str(precision)
     #print "recall = " + str(recall)
     #print "thresholds = " +  str(thresholds)
     
     # Compute the area under the precision-recall curve (average precision from prediction scores)
     self.scores['Precision-Recall AUC'] = average_precision_score(self.y_true, self.y_pred)    
     
     
     self.scores['Weighted Precision'] = average_precision_score(self.y_true, self.y_pred, average='weighted') # weighted average precision by support (the number of true instances for each label).
     self.scores['Average Recall'] = np.average(self.recall)
     self.scores['Average Threshold'] = np.average(self.thresholds)
     
     return
开发者ID:nancyya,项目名称:Predictors,代码行数:26,代码来源:validation.py

示例8: direction_var

def direction_var(values, weights):
  import numpy
  from scitbx import matrix
  weights = numpy.array(weights)
  valx = numpy.array([x for x, y, z in values])
  valy = numpy.array([y for x, y, z in values])
  valz = numpy.array([z for x, y, z in values])

  # Calculate avergae x, y, z
  avrx = numpy.average(valx, weights=weights)
  avry = numpy.average(valy, weights=weights)
  avrz = numpy.average(valz, weights=weights)

  # Calculate mean direction vector
  s1m = matrix.col((avrx, avry, avrz)).normalize()

  # Calculate angles between vectors
  angles = []
  for s in values:
    angles.append(s1m.angle(s))

  # Calculate variance of angles
  angles = numpy.array(angles)
  var = numpy.dot(weights, (angles)**2)/numpy.sum(weights)
  return var
开发者ID:dials,项目名称:dials_scratch,代码行数:25,代码来源:calculate_divergence.py

示例9: kMeans

def kMeans(k, centres, data, error, return_cost = False):
    # centres (kx2)
    # data (Nx2)
    # error: epsilon
    m = centres[:]
    
    while(True):
        sets = [[] for i in range(k)]
        
        for point in data:
            # Calculate distance
            dist_sq = np.sum((point - m) ** 2, axis = 1)
            # Choose the nearest centre and add point into corresponding set
            sets[np.argmin(dist_sq)].append(point)
            
        temp_m = m[:]
        for i in range(len(sets)):
            if sets[i] != []:
                temp_m[i] = (np.mean(sets[i], axis = 0)) # centroid
            
        temp_m = np.array(temp_m)
        changes = temp_m - m
        m = temp_m
        
        if((changes < error).all()):
            break
    
    if(return_cost):
        costs = []
        for i in range(len(sets)):
            costs.append(np.average(np.sqrt(np.sum((m[i] - sets[i]) ** 2, axis = 1))))
        cost = np.average(costs)
        return m, cost
    else:
        return m
开发者ID:LYZhelloworld,项目名称:Courses,代码行数:35,代码来源:assignment3.py

示例10: linearRegression

def linearRegression(segmentedValues):
	print("Linear regression")
	#regression = LinearRegression()
	linRegress = dict()
	for key in segmentedValues.keys():
		x = [x[0] for x in segmentedValues[key]]
		y = [x[1] for x in segmentedValues[key]]
		mean = [float(np.average(x)),float(np.average(y))]
		valuesDict = dict()
		valuesDict['x'] = x
		valuesDict['y'] = y
		valuesFrame = pd.DataFrame(valuesDict)
		try:
			rlmRes = sm.rlm(formula = 'y ~ x', data=valuesFrame).fit()
		except ZeroDivisionError:
			#I have no idea why this occurs. A problem with statsmodel
			#Return None
			print("divide by zero :( ")
			return None
		#Caclulate r2_score (unfortunately, rlm does not give this to us)
		x = np.array(x)
		y = np.array(y)
		#Get the predicted values of Y
		y_pred = x*rlmRes.params.x+rlmRes.params.Intercept
		score = r2_score(y, y_pred)
		#These should both be positive -- put in abs anyway
		slopeConfInterval = abs(float(rlmRes.params.x) - float(rlmRes.conf_int(.005)[0].x))
		intConfInterval = abs(float(rlmRes.params.Intercept) - float(rlmRes.conf_int(.005)[0].Intercept))
		#Slope, Intercept, R^2, num of values, confidenceIntervals, mean of cluster
		linRegress[key] = [rlmRes.params.x, rlmRes.params.Intercept, score, len(x), [slopeConfInterval, intConfInterval], mean]
		print("Key: "+str(key)+" Slope: "+str(rlmRes.params.x)+" Intercept: "+str(rlmRes.params.Intercept)+"R2 Score: "+str(score)+" Num vals: "+str(len(x))+" confidence: "+str(slopeConfInterval)+", "+str(intConfInterval)+" mean: "+str(mean))
	return linRegress
开发者ID:ankitagarwal,项目名称:cscie-81_final,代码行数:32,代码来源:truckAnalysis.py

示例11: randomized_auto_const_bg

    def randomized_auto_const_bg(self, amount):
        """ Automatically determine background. Only consider a randomly
        chosen subset of the image.
        
        Parameters
        ----------
        amount : int
            Size of random sample that is considered for calculation of
            the background.
        """
        cols = [randint(0, self.shape[1] - 1) for _ in xrange(amount)]

        # pylint: disable=E1101,E1103
        data = self.astype(to_signed(self.dtype))
        # Subtract average value from every frequency channel.
        tmp = (data - np.average(self, 1).reshape(self.shape[0], 1))
        # Get standard deviation at every point of time.
        # Need to convert because otherwise this class's __getitem__
        # is used which assumes two-dimensionality.
        tmp = tmp[:, cols]
        sdevs = np.asarray(np.std(tmp, 0))

        # Get indices of values with lowest standard deviation.
        cand = sorted(xrange(amount), key=lambda y: sdevs[y])
        # Only consider the best 5 %.
        realcand = cand[:max(1, int(0.05 * len(cand)))]

        # Average the best 5 %
        bg = np.average(self[:, [cols[r] for r in realcand]], 1)

        return bg.reshape(self.shape[0], 1)
开发者ID:Waino,项目名称:sunpy,代码行数:31,代码来源:spectrogram.py

示例12: genstats

def genstats():
    # returns a list of dictionaries whereas each dictionary contains averages
    global db
    averages = [ 
        # {
            # "reporter": "",
            # "util": "",
            # "time_stddev": "",
            # "time_avg": "",
            # "vertices_avg": "",
            # "edges_avg": "",
        # }, 
    ] # lists of averages

    for (reporter, util), value in db.iteritems():
	value = {k:filter(lambda x: not (x is False or x is None), v) for k,v in value.iteritems()}

        averages.append(
            {
            "reporter": reporter,
            "util": util,
            "time_stddev" : np.std(value["time"], dtype=np.float64),
            "time_avg" : np.average(value["time"]),
            "vertices_avg" : np.average(value["vertices"]) if reporter!="none" else 0,
            "edges_avg" : np.average(value["edges"] if reporter!="none" else 0),
            "timedout_count" : sum(value["timedout"])
        })

    return averages
开发者ID:hasanatkazmi,项目名称:provenance-stats,代码行数:29,代码来源:mkstats.py

示例13: processLanes

def processLanes (lane_ids_as_string, row, junction,isIncomingLane):
    #append an empty row if there are no lanes in this junction    
    if (lane_ids_as_string==""):
        appendEmptyValuesToRow(row)
        return
    edge_prios=[]
    edge_types=[]
    lane_lengths=[]
    lane_speeds=[]    
    lane_id_list= lane_ids_as_string.split(" ")    
    for l_id in lane_id_list:
        try:            
            lane= lane_table[l_id]
            edge= lane.getparent()
            if isIncomingLane:    
                edge_types.append( edge.get("type"))
                edge_prios.append(float(edge.get("priority")))
            lane_lengths.append(float(lane.get("length")))
            lane_speeds.append(float(lane.get("speed")))
        except:
            print ("error with lane_ids: '{}', l_id:'{}' junction_id:'{}'".format(lane_ids_as_string,
                   l_id, row[0]))
            raise
        
    row.append(np.average(lane_speeds))
    row.append(np.std(lane_speeds))
    row.append(np.average(lane_lengths))
    row.append(np.std(lane_lengths))
    if isIncomingLane:        
        row.append(edge_types)
        row.append(np.average(edge_prios))
    else:
        row.append(None)
        row.append(-1)
    row.append(len(lane_id_list))
开发者ID:danielpaulus,项目名称:udacity,代码行数:35,代码来源:dataset-import.py

示例14: AverageBar

def AverageBar(indir='/Volumes/Documents/colbrydi/Documents/DirksWork/chamview/ChamB/'):
    tot = 0.0;
    R = np.array([0,0,0]);
    G = np.array([0,0,0]);
    B = np.array([0,0,0]);
    for root, dirs, filenames in os.walk(indir):
        filenames.sort()
        for f in filenames:
            if fnmatch.fnmatch(f,'0*.jpeg'):
                im = readim(os.path.join(root,f))
                sz = im.shape[0]
                #print(im.shape)
                r = np.zeros((sz,1))
                g = np.zeros((sz,1))
                b = np.zeros((sz,1))
                r[:,0] = np.average(im[:,:,0],1)
                g[:,0] = np.average(im[:,:,1],1)
                b[:,0] = np.average(im[:,:,2],1)
                if tot==0:
                    R = r
                    G = g
                    B = b
                else:
                    R = np.append(R, r, axis=1)
                    G = np.append(G, g, axis=1)
                    B = np.append(B, b, axis=1)
                tot=tot+1
    if tot==0:
        print('ERROR - No files found in '+indir)
        return '' 
    im3 = np.zeros((R.shape[0],R.shape[1], 3))
    im3[:,:,0] = R
    im3[:,:,1] = G
    im3[:,:,2] = B 
    return im3
开发者ID:colbrydi,项目名称:VideoBar,代码行数:35,代码来源:AverageBar.py

示例15: tabular_td_lambda_offline

def tabular_td_lambda_offline(states, actions, generator_class, generator_args, l, alpha):
	gamma = 1
	rms_error = np.zeros(100)
	for i in range(100):
		values = {state: 0 for state in states}
		policies = {state: {action: 1.0/len(actions) for action in actions} for state in states}
		errors = []
		for j in range(10):
			episode_states = []
			rewards = []
			generator = generator_class(*generator_args)
			current_state = generator.state
			while True:
				action, next_state, reward = generator.step(policies, current_state)
				episode_states.append(current_state)
				rewards.append(reward)
				if next_state == None:
					break
				current_state = next_state
			# offline returns
			new_values = {state: values[state] for state in states}
			z = {state: 0 for state in states}
			for t, state in enumerate(episode_states):
				z[state] += 1
				if t < len(episode_states) - 1:
					delta = rewards[t]+gamma*values[episode_states[t+1]]-values[state]
				else:
					delta = rewards[t]-values[state]
				for state in states:
					new_values[state] += alpha*delta*z[state]
					z[state] *= (gamma*l)
			values = new_values
			errors.append(np.average([(values[state]-(state+1)/10.0+1)**2 for state in states])**0.5)
		rms_error[i] = np.average(errors)
	return np.average(rms_error)
开发者ID:jaisanliang,项目名称:Machine-Learning,代码行数:35,代码来源:chapter7.py


注:本文中的numpy.average函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。