当前位置: 首页>>代码示例>>Python>>正文


Python numpy.asmatrix函数代码示例

本文整理汇总了Python中numpy.asmatrix函数的典型用法代码示例。如果您正苦于以下问题:Python asmatrix函数的具体用法?Python asmatrix怎么用?Python asmatrix使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了asmatrix函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: handle_monocular

    def handle_monocular(self, msg):

        (image, camera) = msg
        gray = self.mkgray(image)
        C = self.image_corners(gray)
        if C:
            linearity_rms = self.mc.linear_error(C, self.board)

            # Add in reprojection check
            image_points = C
            object_points = self.mc.mk_object_points([self.board], use_board_size=True)[0]
            dist_coeffs = numpy.zeros((4, 1))
            camera_matrix = numpy.array( [ [ camera.P[0], camera.P[1], camera.P[2]  ],
                                           [ camera.P[4], camera.P[5], camera.P[6]  ],
                                           [ camera.P[8], camera.P[9], camera.P[10] ] ] )
            ok, rot, trans = cv2.solvePnP(object_points, image_points, camera_matrix, dist_coeffs)
            # Convert rotation into a 3x3 Rotation Matrix
            rot3x3, _ = cv2.Rodrigues(rot)
            # Reproject model points into image
            object_points_world = numpy.asmatrix(rot3x3) * (numpy.asmatrix(object_points.squeeze().T) + numpy.asmatrix(trans))
            reprojected_h = camera_matrix * object_points_world
            reprojected   = (reprojected_h[0:2, :] / reprojected_h[2, :])
            reprojection_errors = image_points.squeeze().T - reprojected.T
            reprojection_rms = numpy.sqrt(numpy.sum(numpy.array(reprojection_errors) ** 2) / numpy.product(reprojection_errors.shape))

            # Print the results
            print("Linearity RMS Error: %.3f Pixels      Reprojection RMS Error: %.3f Pixels" % (linearity_rms, reprojection_rms))
        else:
            print('no chessboard')
开发者ID:csc301,项目名称:iarc,代码行数:29,代码来源:cameracheck.py

示例2: test_arclength_half_circle

def test_arclength_half_circle():
    """ Here we define the tests for the lenght computer of our ArcLengthParametrizer, we try it with a half a 
    circle and a fan. 
    We test it both in 2d and 3d."""


    # Number of interpolation points minus one
    n = 5
    toll = 1.e-6
    points = np.linspace(0, 1, (n+1) ) 
    R = 1
    P = 1
    control_points_2d = np.asmatrix(np.zeros([n+1,2]))#[np.array([R*np.cos(5*i * np.pi / (n + 1)), R*np.sin(5*i * np.pi / (n + 1)), P * i]) for i in range(0, n+1)]
    control_points_2d[:,0] = np.transpose(np.matrix([R*np.cos(1 * i * np.pi / (n + 1))for i in range(n+1)]))
    control_points_2d[:,1] = np.transpose(np.matrix([R*np.sin(1 * i * np.pi / (n + 1))for i in range(n+1)]))

    control_points_3d = np.asmatrix(np.zeros([n+1,3]))#[np.array([R*np.cos(5*i * np.pi / (n + 1)), R*np.sin(5*i * np.pi / (n + 1)), P * i]) for i in range(0, n+1)]
    control_points_3d[:,0] = np.transpose(np.matrix([R*np.cos(1 * i * np.pi / (n + 1))for i in range(n+1)]))
    control_points_3d[:,1] = np.transpose(np.matrix([R*np.sin(1 * i * np.pi / (n + 1))for i in range(n+1)]))
    control_points_3d[:,2] = np.transpose(np.matrix([P*i for i in range(n+1)]))

    vsl = AffineVectorSpace(UniformLagrangeVectorSpace(n+1),0,1)
    dummy_arky_2d = ArcLengthParametrizer(vsl, control_points_2d)
    dummy_arky_3d = ArcLengthParametrizer(vsl, control_points_3d)
    length2d = dummy_arky_2d.compute_arclength()[-1,1]
    length3d = dummy_arky_3d.compute_arclength()[-1,1]
#    print (length2d)
#    print (n * np.sqrt(2))
    l2 = np.pi * R
    l3 = 2 * np.pi * np.sqrt(R * R + (P / (2 * np.pi)) * (P / (2 * np.pi)))
    print (length2d, l2)
    print (length3d, l3)
    assert (length2d - l2) < toll
    assert (length3d - l3) < toll
开发者ID:luca-heltai,项目名称:ePICURE,代码行数:34,代码来源:test_arclength.py

示例3: fit

    def fit(self, bags, y):
        """
        @param bags : a sequence of n bags; each bag is an m-by-k array-like
                      object containing m instances with k features
        @param y : an array-like object of length n containing -1/+1 labels
        """
        self._bags = [np.asmatrix(bag) for bag in bags]
        y = np.asmatrix(y).reshape((-1, 1))
        bs = BagSplitter(self._bags, y)

        if self.verbose:
            print 'Training initial sMIL classifier for sbMIL...'
        initial_classifier = sMIL(kernel=self.kernel, C=self.C, p=self.p, gamma=self.gamma,
                                  scale_C=self.scale_C, verbose=self.verbose,
                                  sv_cutoff=self.sv_cutoff)
        initial_classifier.fit(bags, y)
        if self.verbose:
            print 'Computing initial instance labels for sbMIL...'
        f_pos = initial_classifier.predict(bs.pos_inst_as_bags)
        # Select nth largest value as cutoff for positive instances
        n = int(round(bs.L_p * self.eta))
        n = min(bs.L_p, n)
        n = max(bs.X_p, n)
        f_cutoff = sorted((float(f) for f in f_pos), reverse=True)[n - 1]

        # Label all except for n largest as -1
        pos_labels = -np.matrix(np.ones((bs.L_p, 1)))
        pos_labels[np.nonzero(f_pos >= f_cutoff)] = 1.0

        # Train on all instances
        if self.verbose:
            print 'Retraining with top %d%% as positive...' % int(100 * self.eta)
        all_labels = np.vstack([-np.ones((bs.L_n, 1)), pos_labels])
        super(SIL, self).fit(bs.instances, all_labels)
开发者ID:DiNAi,项目名称:misvm,代码行数:34,代码来源:sbmil.py

示例4: weights

    def weights(self, X, Y, res):
        alphas = res.x

        #get weights from valid support vectors - probably should check the math here?
        w1 = 0.0
        w2 = 0.0
        sv_indexes = []
        for i in range(0, len(alphas)):
            if alphas[i] > 1.0e-03:
                w1 += alphas[i] * Y[i] * X[i][0]
                w2 += alphas[i] * Y[i] * X[i][1]
                self.sv_count += 1.0
                sv_indexes.append(i)

        W = [w1, w2]
        self.W = W
        #solve for b, or w0, using any SV
        Wm = np.asmatrix(W)
        try:
            n = sv_indexes[0]
        except IndexError:
            self.no_svs += 1
            return self.fit(X, Y)

        xn = np.asmatrix(X[n])
        xn = xn.getT()
        self.b = (1/Y[n]) - Wm*xn
开发者ID:coconaut,项目名称:machine-learning,代码行数:27,代码来源:classes.py

示例5: _randomize

    def _randomize():
        # Generate random transition,start and emission probabilities
        # Store observations and states
        num_obs = len(self.observations)
        num_states = len(states)

        # Generate a random list with sum of numbers = 1
        a = np.random.random(num_states)
        a /= a.sum()
        # Initialize start_prob
        self.start_prob = a

        # Initialize transition matrix
        # Fill each row with a list that sums upto 1
        self.trans_prob = np.asmatrix(np.zeros((num_states,num_states)))
        for i in range(num_states):
            a = np.random.random(num_states)
            a /= a.sum()
            self.trans_prob[i,:] = a

        # Initialize emission matrix
        # Fill each row with a list that sums upto 1
        self.em_prob = np.asmatrix(np.zeros((num_states,num_obs)))
        for i in range(num_states):
            a = np.random.random(num_obs)
            a /= a.sum()
            self.em_prob[i,:] = a

        return self.start_prob, self.trans_prob, self.em_prob 
开发者ID:Red-devilz,项目名称:hidden_markov,代码行数:29,代码来源:hmm_class.py

示例6: elop

def elop(X, Y, op):
    """
    Compute element-wise operation of matrix :param:`X` and matrix :param:`Y`.
    
    :param X: First input matrix.
    :type X: :class:`scipy.sparse` of format csr, csc, coo, bsr, dok, lil, dia or :class:`numpy.matrix`
    :param Y: Second input matrix.
    :type Y: :class:`scipy.sparse` of format csr, csc, coo, bsr, dok, lil, dia or :class:`numpy.matrix`
    :param op: Operation to be performed. 
    :type op: `func` 
    """
    try:
        zp1 = op(0, 1) if sp.isspmatrix(X) else op(1, 0)
        zp2 = op(0, 0) 
        zp = zp1 != 0 or zp2 != 0
    except:
        zp = 0
    if sp.isspmatrix(X) or sp.isspmatrix(Y):
        return _op_spmatrix(X, Y, op) if not zp else _op_matrix(X, Y, op)
    else:
        try:
            X[X == 0] = np.finfo(X.dtype).eps
            Y[Y == 0] = np.finfo(Y.dtype).eps
        except ValueError:
            return op(np.asmatrix(X), np.asmatrix(Y))
        return op(np.asmatrix(X), np.asmatrix(Y))
开发者ID:bjzu,项目名称:MF,代码行数:26,代码来源:linalg.py

示例7: train_map

    def train_map(self):
        if len(self.dataset) == 0:
            return
        
        X = self.dataset.inputs
        Y = self.dataset.targets
        
        # choose random center vectors from training set
        rnd_idx = np.random.permutation(X.shape[0])[:self.numCenters]
        self.centers = [X[i,:] for i in rnd_idx]

        # calculate activations of RBFs
        G = np.asmatrix(self._designMatrix(X))
        Y = np.asmatrix(Y)
        M = self.numCenters
        
        # create (reset) prior over weights w
        m0 = np.matrix(np.zeros((M, 1), float))
        S0 = np.matrix(self.alpha*np.eye(M))

        # calculate posterior (p. 153, eqns. 3.50, 3.51)
        self.SN = S0.I + self.beta*G.T*G
        self.mN = np.linalg.inv(self.SN) * (S0.I*m0 + self.beta*G.T*Y)

        self.W = np.asarray(self.mN)
开发者ID:rueckstiess,项目名称:dopamine,代码行数:25,代码来源:blinreg.py

示例8: __init__

    def __init__(self, submod, V, eps_p_f, ti=None, tally=True, verbose=0):

        self.f_eval = submod.f_eval
        self.f = submod.f
        pm.StepMethod.__init__(self, [self.f, self.f_eval], tally=tally)

        self.children_no_data = copy.copy(self.children)
        if isinstance(eps_p_f, pm.Variable):
            self.children_no_data.discard(eps_p_f)
            self.eps_p_f = eps_p_f
        else:
            for epf in eps_p_f:
                self.children_no_data.discard(epf)
            self.eps_p_f = pm.Lambda("eps_p_f", lambda e=eps_p_f: np.hstack(e), trace=False)

        self.V = pm.Lambda("%s_vect" % V.__name__, lambda V=V: V * np.ones(len(submod.f_eval)))
        self.C_eval = submod.C_eval
        self.M_eval = submod.M_eval
        self.S_eval = submod.S_eval

        M_eval_shape = pm.utils.value(self.M_eval).shape
        C_eval_shape = pm.utils.value(self.C_eval).shape
        self.ti = ti or np.arange(M_eval_shape[0])

        # Work arrays
        self.scratch1 = np.asmatrix(np.empty(C_eval_shape, order="F"))
        self.scratch2 = np.asmatrix(np.empty(C_eval_shape, order="F"))
        self.scratch3 = np.empty(M_eval_shape)

        # Initialize hidden attributes
        self.accepted = 0.0
        self.rejected = 0.0
        self._state = ["rejected", "accepted", "proposal_distribution"]
        self._tuning_info = []
        self.proposal_distribution = None
开发者ID:fannix,项目名称:pymc,代码行数:35,代码来源:step_methods.py

示例9: similarity

 def similarity(self):
     matrixvectout = numpy.asmatrix(self.vectout)
     # print("matrixvectout shape is ", matrixvectout.shape)
     matrixqvectsout = numpy.asmatrix(self.qvectsout.toarray())
     # print("matrix qvectsout shape is ", matrixqvectsout.shape)
     out = self.bm_vectobj.get_feature_names()
     self.similaritymatrix = numpy.asarray(matrixvectout*matrixqvectsout.T)
开发者ID:BasilBeirouti,项目名称:Flask_Eval_Framework_Server,代码行数:7,代码来源:Deprecated.py

示例10: generate_dataset

def generate_dataset():
    global avg_trans_lis, type2_patient_lis, data_set, patient_ge_ag_lis, trans_dic, patient_smok_rec
    for it in avg_trans_lis:
        item_lis = it[1:6]
        # get the gender and age
        for a_it in patient_ge_ag_lis:
            if it[0] == a_it[0]:
                # gender and age
                item_lis.append(a_it[1])
                item_lis.append(a_it[2])
        # get the number of visiting doctors
        num_vis = len(trans_dic[it[0]])
        item_lis.append(num_vis)
        # get the smoking status record
        item_lis.append(patient_smok_rec[it[0]])
        # get the class tag
        for ite in type2_patient_lis:
            if it[0] == ite[0]:
                item_lis.append(int(ite[1]))
        # only store the patient has smoking record
        # if int(patient_smok_rec[it[0]])>0:
        # print ".......................00000000000000000000000000000"
        data_set.append(item_lis)
    # transform the dataset to change the distance from euclidean distance
    # to mahalanobis distance
    # get the covariance matrix
    cov_matri = np.cov((np.asmatrix(data_set)[:, [0, 1, 2, 3, 4, 5, 6, 7, 8]]).transpose())
    temp_data_set = (np.dot(np.asmatrix(data_set)[:, [0, 1, 2, 3, 4, 5, 6, 7, 8]], cov_matri)).tolist()
    for it in range(0, len(data_set)):
        item_lis = temp_data_set[it][0:9]
        item_lis.append(data_set[it][9])
        data_set[it] = item_lis
开发者ID:boy0122,项目名称:liblinear_source,代码行数:32,代码来源:svm_feature_9.py

示例11: test_sum_squares

    def test_sum_squares(self):
        X = Variable(5, 4)
        P = np.asmatrix(np.random.randn(3, 5))
        Q = np.asmatrix(np.random.randn(4, 7))
        M = np.asmatrix(np.random.randn(3, 7))

        y = P*X*Q + M
        self.assertFalse(y.is_constant())
        self.assertTrue(y.is_affine())
        self.assertTrue(y.is_quadratic())
        self.assertTrue(y.is_dcp())

        s = sum_squares(y)
        self.assertFalse(s.is_constant())
        self.assertFalse(s.is_affine())
        self.assertTrue(s.is_quadratic())
        self.assertTrue(s.is_dcp())

        # Frobenius norm squared is indeed quadratic
        # but can't show quadraticity using recursive rules
        t = norm(y, 'fro')**2
        self.assertFalse(t.is_constant())
        self.assertFalse(t.is_affine())
        self.assertFalse(t.is_quadratic())
        self.assertTrue(t.is_dcp())
开发者ID:nicaiseeric,项目名称:cvxpy,代码行数:25,代码来源:test_quadratic.py

示例12: GDA_N_D

def GDA_N_D(X, M, cov1, cov2, cov3, classes,priors):
    dclass1 = []
    dclass2 = []
    dclass3 = []
    cov1 = np.asmatrix(cov1, dtype='float')
    cov2 = np.asmatrix(cov2, dtype='float')
    cov3 = np.asmatrix(cov3, dtype='float')
    X = np.asmatrix(X[:, 0:4], dtype='float')
    M = np.asmatrix(M, dtype='float')
    for i in range(0, len(X)):
        x = (X[i] - M[0])
        y = (X[i] - M[1])
        z = (X[i] - M[2])
        dclass1.append(-mth.log(np.linalg.det(cov1)) - 0.5 * (
            np.dot(np.dot(x, np.linalg.inv(cov1)), x.transpose())) + mth.log(priors[0]))
        dclass2.append(-mth.log(np.linalg.det(cov2)) - 0.5 * (
            np.dot(np.dot(y, np.linalg.inv(cov2)), y.transpose())) + mth.log(priors[1]))
        dclass3.append(-mth.log(np.linalg.det(cov3)) - 0.5 * (
            np.dot(np.dot(z, np.linalg.inv(cov3)), z.transpose())) + mth.log(priors[2]))
    predict_class = []
    for i, j, k in zip(dclass1, dclass2, dclass3):
        if i > j and i > k:
            predict_class.append(classes[0])
        elif j > i and j > k:
            predict_class.append(classes[1])
        else:
            predict_class.append(classes[2])
    return predict_class
开发者ID:sahithrao153,项目名称:Machine-learning,代码行数:28,代码来源:HW2_3.py

示例13: plot_pr

    def plot_pr(self, i0, rg, qmax=5., dmax=200., ax=None):
        """ calculate p(r) function
        use the given i0 and rg value to fill in the low q part of the gap in data
        truncate the high q end at qmax
        """
        if ax==None:
            ax = plt.gca()
        ax.set_xscale('linear')
        ax.set_yscale('linear')

        if self.qgrid[-1]<qmax: qmax=self.qgrid[-1]
        tqgrid = np.arange(0,qmax,qmax/len(self.qgrid))
        tint = np.interp(tqgrid,self.qgrid,self.data)

        tint[tqgrid*rg<1.] = i0*np.exp(-(tqgrid[tqgrid*rg<1.]*rg)**2/3.)
        #tint -= tint[-10:].sum()/10
        # Hanning window for reducing fringes in p(r)
        tw = np.hanning(2*len(tqgrid)+1)[len(tqgrid):-1]
        tint *= tw

        trgrid = np.arange(0,dmax,1.)
        kern = np.asmatrix([[rj**2*np.sinc(qi*rj/np.pi) for rj in trgrid] for qi in tqgrid])
        tt = np.asmatrix(tint*tqgrid**2).T
        tpr = np.reshape(np.array((kern.T*tt).T),len(trgrid))
        tpr /= tpr.sum()

        #plt.plot(tqgrid,tint,"g-")
        #tpr = np.fft.rfft(tint)
        #tx = range(len(tpr))
        ax.plot(trgrid,tpr,"g-")
        ax.set_xlabel("$r (\AA)$", fontsize='x-large')
        ax.set_ylabel("$P(r)$", fontsize='x-large')
开发者ID:stvn66,项目名称:sassie_0_dna,代码行数:32,代码来源:slnXS.py

示例14: active

 def active(self, X):
     pre_h = np.zeros((1, self.h_size), dtype=theano.config.floatX)
     [R, Z, GH, H] = self.cell.active(X, pre_h)
     self.activation = np.asmatrix(H)
     self.R = np.asmatrix(R)
     self.Z = np.asmatrix(Z)
     self.GH = np.asmatrix(GH)
开发者ID:iamsile,项目名称:rnn-theano-cpu-run,代码行数:7,代码来源:gru.py

示例15: _alpha_cal

    def _alpha_cal(self,observations):
        # Calculate alpha matrix and return it
        num_states = self.em_prob.shape[0]
        total_stages = len(observations)

        # Initialize values
        ob_ind = self.obs_map[ observations[0] ]
        alpha = np.asmatrix(np.zeros((num_states,total_stages)))
        c_scale = np.asmatrix(np.zeros((total_stages,1)))

        # Handle alpha base case
        alpha[:,0] = np.multiply ( np.transpose(self.em_prob[:,ob_ind]) , self.start_prob ).transpose()
        # store scaling factors, scale alpha
        c_scale[0,0] = 1/np.sum(alpha[:,0])
        alpha[:,0] = alpha[:,0] * c_scale[0]
        # Iteratively calculate alpha(t) for all 't'
        for curr_t in range(1,total_stages):
            ob_ind = self.obs_map[observations[curr_t]]
            alpha[:,curr_t] = np.dot( alpha[:,curr_t-1].transpose() , self.trans_prob).transpose()
            alpha[:,curr_t] = np.multiply( alpha[:,curr_t].transpose() , np.transpose( self.em_prob[:,ob_ind] )).transpose()

            # Store scaling factors, scale alpha
            c_scale[curr_t] = 1/np.sum(alpha[:,curr_t])
            alpha[:,curr_t] = alpha[:,curr_t] * c_scale[curr_t]

        # return the computed alpha
        return (alpha,c_scale)
开发者ID:Red-devilz,项目名称:hidden_markov,代码行数:27,代码来源:hmm_class.py


注:本文中的numpy.asmatrix函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。