本文整理汇总了Python中numpy.array_repr函数的典型用法代码示例。如果您正苦于以下问题:Python array_repr函数的具体用法?Python array_repr怎么用?Python array_repr使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了array_repr函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: write_ppc_file
def write_ppc_file(fname):
"""Save PYPOWER file.
"""
filename = fname
base = os.path.basename(fname)
casename = os.path.splitext(base)[0]
outfile = open(fname, 'w', newline='')
outfile.write('from numpy import array\n\n')
outfile.write('def ' + casename + '():\n')
outfile.write('\tppc = {"version": ''2''}\n')
outfile.write('\tppc["baseMVA"] = 100.0\n')
outfile.write('\tppc["bus"] = ')
outfile.write(np.array_repr(ppc["bus"]))
outfile.write('\n\n')
outfile.write('\tppc["gen"] = ')
outfile.write(np.array_repr(ppc["gen"]))
outfile.write('\n\n')
outfile.write('\tppc["branch"] = ')
outfile.write(np.array_repr(ppc["branch"]))
outfile.write('\n\n')
outfile.write('\treturn ppc')
outfile.close()
return True
示例2: __repr__
def __repr__(self):
# if numpy.all(self == 0):
# # Bin-only output
# return "{}(bins={})".format(type(self).__name__, numpy.array_repr(self._bins))
# else:
if self.ndim == 1:
return "{}({}, data={})".format(type(self).__name__,
numpy.array_repr(self._bins)[len("array("):-1],
numpy.array_repr(self)[len(type(self).__name__)+1:-1])
else:
return "{}(({}), data={})".format(type(self).__name__,
",".join([numpy.array_repr(x)[6:-1] for x in self._bins]),
numpy.array_repr(self)[len(type(self).__name__)+1:-1])
示例3: test
def test():
from sklearn.metrics import mean_squared_error
import Surrogates.DataExtraction.pcs_parser as pcs_parser
sp = pcs_parser.read(file("/home/eggenspk/Surrogates/Data_extraction/Experiments2014/hpnnet/smac_2_06_01-dev/nips2011.pcs"))
# Read data from csv
header, data = read_csv("/home/eggenspk/Surrogates/Data_extraction/hpnnet_nocv_convex_all/hpnnet_nocv_convex_all_fastrf_results.csv",
has_header=True, num_header_rows=3)
para_header = header[0][:-2]
type_header = header[1]
cond_header = header[2]
#print data.shape
checkpoint = hash(numpy.array_repr(data))
assert checkpoint == 246450380584980815
model = GaussianProcess(sp=sp, encode=False, rng=1, debug=True)
x_train_data = data[:100, :-2]
y_train_data = data[:100, -1]
x_test_data = data[100:, :-2]
y_test_data = data[100:, -1]
model.train(x=x_train_data, y=y_train_data, param_names=para_header)
y = model.predict(x=x_train_data[1, :])
print "Is: %100.70f, Should: %f" % (y, y_train_data[1])
assert y[0] == 0.470745153514900149804844886602950282394886016845703125
print "Predict whole data"
y_whole = model.predict(x=x_test_data)
mse = mean_squared_error(y_true=y_test_data, y_pred=y_whole)
print "MSE: %100.70f" % mse
assert mse == 0.006257598609004190459703664828339242376387119293212890625
print "Soweit so gut"
# Try the same with encoded features
model = GaussianProcess(sp=sp, encode=True, rng=1, debug=True)
#print data[:10, :-2]
model.train(x=x_train_data, y=y_train_data, param_names=para_header)
y = model.predict(x=x_train_data[1, :])
print "Is: %100.70f, Should: %f" % (y, y_train_data[1])
assert y[0] == 0.464671665294324409689608046392095275223255157470703125
print "Predict whole data"
y_whole = model.predict(x=x_test_data)
mse = mean_squared_error(y_true=y_test_data, y_pred=y_whole)
print "MSE: %100.70f" % mse
assert mse == 0.00919265128042330570412588031103950925171375274658203125
assert hash(numpy.array_repr(data)) == checkpoint
示例4: myf
def myf(x):
header = 'MaxStepX, TorsoWy, TorsoWx, StepHeight, Stiffness, MaxStepTheta, MaxStepY, MaxStepFrequency'
print header
print np.array_repr(x[0]).replace('\n', '').replace('\t', '')
speed = input('Input 1/average_speed = ')
output = np.array(float(speed))
with open("data_new.py",'a') as f:
np.savetxt(f, x, delimiter=",")
# for item in x:
# f.write("%s\n" % str(np.array_repr(item).replace('\n', '').replace('\t', '')))
with open("readings_new.py",'a') as f:
f.write("%s\n" % str(output))
return output
示例5: test
def test():
from sklearn.metrics import mean_squared_error
import Surrogates.DataExtraction.pcs_parser as pcs_parser
sp = pcs_parser.read(file("/home/eggenspk/Surrogates/Data_extraction/Experiments2014/hpnnet/smac_2_06_01-dev/nips2011.pcs"))
# Read data from csv
header, data = read_csv("/home/eggenspk/Surrogates/Data_extraction/hpnnet_nocv_convex_all/hpnnet_nocv_convex_all_fastrf_results.csv",
has_header=True, num_header_rows=3)
para_header = header[0][:-2]
type_header = header[1]
cond_header = header[2]
#print data.shape
checkpoint = hash(numpy.array_repr(data))
assert checkpoint == 246450380584980815
model = GradientBoosting(sp=sp, encode=False, debug=True)
x_train_data = data[:1000, :-2]
y_train_data = data[:1000, -1]
x_test_data = data[1000:, :-2]
y_test_data = data[1000:, -1]
model.train(x=x_train_data, y=y_train_data, param_names=para_header, rng=1)
y = model.predict(x=x_train_data[1, :])
print "Is: %100.70f, Should: %f" % (y, y_train_data[1])
assert y[0] == 0.45366000254662230961599789225147105753421783447265625
print "Predict whole data"
y_whole = model.predict(x=x_test_data)
mse = mean_squared_error(y_true=y_test_data, y_pred=y_whole)
print "MSE: %100.70f" % mse
assert mse == 0.00188246958253847243396073007914992558653466403484344482421875
print "Soweit so gut"
# Try the same with encoded features
model = GradientBoosting(sp=sp, encode=True, debug=True)
#print data[:10, :-2]
model.train(x=x_train_data, y=y_train_data, param_names=para_header, rng=1)
y = model.predict(x=x_train_data[1, :])
print "Is: %100.70f, Should: %f" % (y, y_train_data[1])
assert y[0] == 0.460818965082699205648708584703854285180568695068359375
print "Predict whole data"
y_whole = model.predict(x=x_test_data)
mse = mean_squared_error(y_true=y_test_data, y_pred=y_whole)
print "MSE: %100.70f" % mse
assert mse == 0.002064362783199560034963493393433964229188859462738037109375
assert hash(numpy.array_repr(data)) == checkpoint
示例6: showProjectionDialog
def showProjectionDialog(self):
"""Get and set OpenGL ModelView matrix and focus.
Useful for setting two different instances to the exact same projection"""
dlg = uic.loadUi("multilineinputdialog.ui")
dlg.setWindowTitle("Get and set OpenGL ModelView matrix and focus")
precision = 8 # use default precision
MV_repr = np.array_repr(self.MV, precision=precision)
focus_repr = np.array_repr(self.focus, precision=precision)
txt = "self.MV = \\\n" "%s\n\n" "self.focus = %s" % (MV_repr, focus_repr)
dlg.plainTextEdit.insertPlainText(txt)
dlg.plainTextEdit.selectAll()
if dlg.exec_(): # returns 1 if OK, 0 if Cancel
txt = str(dlg.plainTextEdit.toPlainText())
from numpy import array, float32 # required for exec()
exec(txt) # update self.MV and self.focus, with hopefully no maliciousness
示例7: setUp
def setUp(self):
self._sp = pcs_parser.read(file(os.path.join(os.path.dirname(os.path.realpath(__file__)), "Testdata/nips2011.pcs")))
# Read data from csv
header, self._data = read_csv(os.path.join(os.path.dirname(os.path.realpath(__file__)), "Testdata/hpnnet_nocv_convex_all_fastrf_results.csv"),
has_header=True, num_header_rows=3)
self._para_header = header[0][:-2]
self._checkpoint = hash(numpy.array_repr(self._data))
示例8: __init__
def __init__(self,q,x,f,qdesc="q",xdesc="x",fdesc="f"):
"""
q ... 1D-array of shape (q.size)
x ... 2D-array of shape (q.size,x.size)
f ... 2D-array of shape (q.size,x.size)
*desc... description string for q,x,f
"""
self.f = np.asarray(f,dtype='float');
self.x = np.asarray(x,dtype='float');
self.q = np.asarray(q,dtype='float');
self.fdesc = fdesc;
self.xdesc = xdesc;
self.qdesc = qdesc;
# complete input data (if constant for different q)
if (len(self.x.shape)==1):
self.x=np.tile(self.x,(len(self.q),1));
if (len(self.f.shape)==1):
self.f=np.tile(self.f,(len(self.q),1));
# test shape of input data
if (self.q.shape[0] <> self.x.shape[0]) or \
(self.x.shape <> self.f.shape):
raise ValueError("Invalid shape of arguments.");
# test for double parameters
if (np.unique(self.q).size < self.q.size):
raise ValueError("Parameters are not unique: \n " + np.array_repr(np.sort(self.q)));
示例9: write
def write(self):
outdict = {'model' : self.model,
'data_out' : {'q' : json.dumps(self.q_vals_out),
'i' : json.dumps(self.i_vals_out),
'units' : 'A^-1'},
'run' : {'command' : self.command,
'date' : str(datetime.date.today()),
'time' : str(datetime.time())},
'parameters_in' : self.parameters_in}
if self.dataset:
outdict['dataset'] = {'q_in' : json.dumps(self.datain.q),
'i_in' : json.dumps(self.datain.i)}
if (self.fitsuccess and (self.command == 'fit')):
outdict['fit'] = {'chi^2' : self.chisqr,
'cov_x' : np.array_repr(self.cov_x),
'parameters_out' : self.parameters}
path, filename = os.path.split(self.outpath)
if filename == '':
filename = self.outfile
if not os.path.exists(path):
os.mkdir(path)
if self.xml:
self.write_cml(path, filename)
else:
f = open(os.path.join(path, filename), 'w')
json.dump(outdict, f)
f.close()
示例10: __repr__
def __repr__(self):
"""representation a mdf_skeleton class data strucutre
Returns:
------------
string of mdf class ordered as below
master_channel_name
channel_name description
numpy_array unit
"""
output = 'file name : ' + self.fileName + '\n'
for m in self.file_metadata.keys():
output += m + ' : ' + str(self.file_metadata[m]) + '\n'
output += '\nchannels listed by data groups:\n'
for d in self.masterChannelList.keys():
if d is not None:
output += d + '\n'
for c in self.masterChannelList[d]:
output += ' ' + c + ' : '
desc = self.getChannelDesc(c)
if desc is not None:
output += str(desc)
output += '\n '
data = self.getChannelData(c)
if data.dtype.kind != 'V': # not byte, impossible to represent
output += array_repr(data, \
precision=3, suppress_small=True)
unit = self.getChannelUnit(c)
output += ' ' + unit + '\n'
return output
示例11: test_train
def test_train(self):
model = Surrogates.RegressionModels.RidgeRegression.RidgeRegression(sp=self._sp, encode=False, rng=1, debug=True)
x_train_data = self._data[:1000, :-2]
y_train_data = self._data[:1000, -1]
x_test_data = self._data[1000:, :-2]
y_test_data = self._data[1000:, -1]
self.assertEqual(hash(numpy.array_repr(x_train_data)), -4233919799601849470)
self.assertEqual(hash(numpy.array_repr(y_train_data)), -5203961977442829493)
model.train(x=x_train_data, y=y_train_data, param_names=self._para_header)
lower, upper = model._scale_info
should_be_lower = [None, -29.6210089736, 0.201346561323, 0, -20.6929600285, 0, 0, 0, 4.60517018599, 0,
2.77258872224, 0, 0, 0.502038871605, -17.2269829469]
should_be_upper = [None, -7.33342451433, 1.99996215592, 1, -6.92778489957, 2, 1, 1, 9.20883924585, 1,
6.9314718056, 3, 1, 0.998243871085, 4.72337617503]
for idx in range(x_train_data.shape[1]):
self.assertEqual(lower[idx], should_be_lower[idx])
self.assertEqual(upper[idx], should_be_upper[idx])
y = model.predict(x=x_train_data[1, :])
print "Is: %100.70f, Should: %f" % (y, y_train_data[1])
self.assertAlmostEqual(y[0], 0.337919078549359763741222195676527917385101318359375, msg=y[0])
print "Predict whole data"
y_whole = model.predict(x=x_test_data)
mse = mean_squared_error(y_true=y_test_data, y_pred=y_whole)
print "MSE: %100.70f" % mse
self.assertAlmostEqual(mse, 0.009198484147153261625273756862)
# Try the same with encoded features
model = Surrogates.RegressionModels.RidgeRegression.RidgeRegression(sp=self._sp, encode=True, rng=1, debug=True)
#print data[:10, :-2]
model.train(x=x_train_data, y=y_train_data, param_names=self._para_header, rng=1)
y = model.predict(x=self._data[1, :-2])
print "Is: %100.70f, Should: %f" % (y, self._data[1, -2])
self.assertAlmostEqual(y[0], 0.337619548171, msg="%f" % y[0])
print "Predict whole data"
y_whole = model.predict(x=x_test_data)
mse = mean_squared_error(y_true=y_test_data, y_pred=y_whole)
print "MSE: %100.70f" % mse
self.assertAlmostEqual(mse, 0.0092026737874672301)
示例12: __str__
def __str__(self):
""" prints compressed_data object content
"""
output = 'Data: \n'
output += array_repr(self.data[:],
precision=3,
suppress_small=True)
output += '\n Compression level ' + str(self._compression_level) + '\n'
return output
示例13: _repr_footer
def _repr_footer(self):
levheader = "Levels (%d): " % len(self.levels)
# TODO: should max_line_width respect a setting?
levstring = np.array_repr(self.levels, max_line_width=60)
indent = " " * (levstring.find("[") + len(levheader) + 1)
lines = levstring.split("\n")
levstring = "\n".join([lines[0]] + [indent + x.lstrip() for x in lines[1:]])
namestr = "Name: %s, " % self.name if self.name is not None else ""
return u("%s\n%sLength: %d" % (levheader + levstring, namestr, len(self)))
示例14: __repr__
def __repr__(self):
temp = "Categorical: %s\n%s\n%s"
values = np.asarray(self)
levheader = "Levels (%d): " % len(self.levels)
levstring = np.array_repr(self.levels, max_line_width=60)
indent = " " * (levstring.find("[") + len(levheader) + 1)
lines = levstring.split("\n")
levstring = "\n".join([lines[0]] + [indent + x.lstrip() for x in lines[1:]])
return temp % ("" if self.name is None else self.name, repr(values), levheader + levstring)
示例15: __repr__
def __repr__(self):
output = 'file name : ' + self.fileName + '\n'
for m in self.file_metadata.keys():
output += m + ' : ' + str(self.file_metadata[m]) + '\n'
output += '\nchannels listed by data groups:\n'
for d in self.masterChannelList.keys():
if d is not None:
output += d + '\n'
for c in self.masterChannelList[d]:
output += ' ' + c + ' : ' + str(self[c]['description']) + '\n'
output += ' ' + array_repr(self[c]['data'], precision=3, suppress_small=True) \
+ ' ' + self[c]['unit'] + '\n'
return output