本文整理汇总了Python中numpy.around函数的典型用法代码示例。如果您正苦于以下问题:Python around函数的具体用法?Python around怎么用?Python around使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了around函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_density
def plot_density(count_trips,count,title):
grid = np.zeros((config.bins,config.bins))
for (i,j),z in np.ndenumerate(grid):
try:
grid[j,i] = float(count[(i,j)]) / float(count_trips[(i,j)])
except:
grid[j,i] = 0
#print "----"
#print grid[i,j], i, j
#print count[(i,j)]
#print count_trips[(i,j)]
grid = np.flipud(grid) #to counter matshow vertical flip
fig, ax = plt.subplots(figsize=(10, 10))
ax.matshow(grid, cmap='spectral')
ax.xaxis.set_ticks_position('bottom')
ax.set_xlabel('Longitude')
ax.set_ylabel('Latitude')
xticks = np.linspace(config.minlong,config.maxlong,num=round(config.bins/2))
yticks = np.linspace(config.minlat,config.maxlat,num=round(config.bins/2))
yticks = yticks[::-1]
xticks = np.around(xticks,decimals=1)
yticks = np.around(yticks,decimals=1)
xspace = np.linspace(0,config.bins-1,config.bins/2)
yspace = np.linspace(0,config.bins-1,config.bins/2)
plt.xticks(xspace,xticks)
plt.yticks(yspace,yticks)
for (i,j),z in np.ndenumerate(grid):
ax.text(j, i, '{:0.2f}'.format(z), ha='center', va='center')
plt.title(title)
plt.show()
示例2: test_logvecadd
def test_logvecadd(self):
vec1 = log(array([1, 2, 3, 4]))
vec2 = log(array([5, 6, 7, 8]))
sumvec = array([1.79175947, 2.07944154, 2.30258509, 2.48490665])
self.assertTrue(
array_equal(around(MarkovModel._logvecadd(vec1, vec2), decimals=3), around(sumvec, decimals=3)))
示例3: _get_initial_classes
def _get_initial_classes(self):
images = map(lambda f: cv2.imread(path.join(self._root, f)), self._files)
self._avg_pixels = np.array([], dtype=np.uint8)
# extract parts from each image for all of our 6 categories
for i in range(0, self._n_objects):
rects = self._rects[:, i]
# compute maximum rectangle
rows = np.max(rects['f2'] - rects['f0'])
cols = np.max(rects['f3'] - rects['f1'])
# extract annotated rectangles
im_rects = map(lambda (im, r): im[r[0]:r[2],r[1]:r[3],:], zip(images, rects))
# resize all rectangles to the max size & average all the rectangles
im_rects = np.array(map(lambda im: cv2.resize(im, (cols, rows)), im_rects), dtype=np.float)
avgs = np.around(np.average(im_rects, axis = 0))
# average the resulting rectangle to compute
mn = np.around(np.array(cv2.mean(avgs), dtype='float'))[:-1].astype('uint8')
if(self._avg_pixels.size == 0):
self._avg_pixels = mn
else:
self._avg_pixels = np.vstack((self._avg_pixels, mn))
示例4: test_make_tone_irregular
def test_make_tone_irregular():
fq = 15066
db = 82
fs = 200101
dur = 0.7
risefall = 0.0015
calv = 0.888
caldb = 99
npts = int(fs*dur)
tone, timevals = tools.make_tone(fq, db, dur, risefall, fs, caldb, calv)
print 'lens', npts, len(tone), len(timevals)
assert len(tone) == npts
assert len(timevals) == npts
spectrum = np.fft.rfft(tone)
peak_idx = (abs(spectrum - max(spectrum))).argmin()
freq_idx = np.around(fq*(float(npts)/fs))
assert peak_idx == freq_idx
print 'intensities', (20 * np.log10(tools.signal_amplitude(tone, fs)/calv)) + caldb, db
assert np.around((20 * np.log10(tools.signal_amplitude(tone, fs)/calv)) + caldb, 1) == db
print 'durs', np.around(timevals[-1], 5), dur - (1./fs)
assert dur - 2*(1./fs) < timevals[-1] <= dur - (1./fs)
示例5: test_metrics_correctness_with_iterator
def test_metrics_correctness_with_iterator(self):
layers = [
keras.layers.Dense(8, activation='relu', input_dim=4,
kernel_initializer='ones'),
keras.layers.Dense(1, activation='sigmoid', kernel_initializer='ones')
]
model = testing_utils.get_model_from_layers(layers, (4,))
model.compile(
loss='binary_crossentropy',
metrics=['accuracy', metrics_module.BinaryAccuracy()],
optimizer='rmsprop',
run_eagerly=testing_utils.should_run_eagerly())
np.random.seed(123)
x = np.random.randint(10, size=(100, 4)).astype(np.float32)
y = np.random.randint(2, size=(100, 1)).astype(np.float32)
dataset = dataset_ops.Dataset.from_tensor_slices((x, y))
dataset = dataset.batch(10)
iterator = dataset_ops.make_one_shot_iterator(dataset)
outs = model.evaluate(iterator, steps=10)
self.assertEqual(np.around(outs[1], decimals=1), 0.5)
self.assertEqual(np.around(outs[2], decimals=1), 0.5)
y = np.zeros((100, 1), dtype=np.float32)
dataset = dataset_ops.Dataset.from_tensor_slices((x, y))
dataset = dataset.repeat(100)
dataset = dataset.batch(10)
iterator = dataset_ops.make_one_shot_iterator(dataset)
outs = model.evaluate(iterator, steps=10)
self.assertEqual(outs[1], 0.)
self.assertEqual(outs[2], 0.)
示例6: save2mat
def save2mat(self, i):
global samples0, samples1;
std0 = np.around(np.std(samples0), 5);
std1 = np.around(np.std(samples1), 5);
print 'std0:', std0, 'std1', std1;
scipy.io.savemat('./data/'+folder_name+'/'+filename+'_'+str(i)+'.mat', mdict={'s0':samples0, 's1':samples1, 'timestamp': self.timestamp, 'fs':self.sdr.sample_rate, 'ref_addr':ref_addr});
示例7: test_circmean_against_scipy
def test_circmean_against_scipy():
# testing against scipy.stats.circmean function
# the data is the same as the test before, but in radians
data = np.array([0.89011792, 1.1693706, 0.6981317, 1.90240888, 0.54105207,
6.24827872])
answer = scipy.stats.circmean(data)
assert_equal(np.around(answer, 2), np.around(circmean(data), 2))
示例8: receivers_setup
def receivers_setup(self, pr, pz, Tiempo):
self.receiver_r = np.int32(np.around(np.array(pr)/self.dr))
self.receiver_z = np.int32(np.around(np.array(pz)/self.dz))
self.N_z = np.size(self.receiver_z,0)
self.receivers_signals = np.zeros((Tiempo,self.N_z), dtype=np.float32)
示例9: test_obtain_shape_from_bb
def test_obtain_shape_from_bb():
s = sdm2.obtain_shape_from_bb(np.array([[26, 49], [350, 400]]))
assert ((np.around(s.points) == np.around(initial_shape[3].points)).
all())
assert (s.n_dims == 2)
assert (s.n_landmark_groups == 0)
assert (s.n_points == 68)
示例10: us_grid
def us_grid(resolution=.5, sparse=True):
resolution = .5
bounds = USA.bounds
# Grid boundaries are determined by nearest degree.
min_long = np.floor(bounds[0])
min_lat = np.floor(bounds[1])
max_long = np.ceil(bounds[2])
max_lat = np.ceil(bounds[3])
# Division should be close to an integer.
# Add one to number of points to include the end
# This is robust only to resolutions that "evenly" divide the range.
nPointsLong = np.around((max_long - min_long) / resolution) + 1
nPointsLat = np.around((max_lat - min_lat ) / resolution) + 1
long_points = np.linspace(min_long, max_long, nPointsLong)
lat_points = np.linspace(min_lat, max_lat, nPointsLat )
outline = contiguous_outline2('../tiger/cb_2013_us_nation_20m.shp')
for i, (xi, yi) in enumerate(product(range(len(long_points)-1),
range(len(lat_points)-1))):
cell = box(long_points[xi], lat_points[yi],
long_points[xi+1], lat_points[yi+1])
if sparse:
# Add cell only if it intersects contiguous USA
if cell.intersects(outline):
yield cell
else:
yield cell
示例11: test_pmf_accuracy
def test_pmf_accuracy():
"""Compare accuracy of the probability mass function.
Compare the results with the accuracy check proposed in [Hong2013]_,
equation (15).
"""
[p1, p2, p3] = np.around(np.random.random_sample(size=3), decimals=2)
[n1, n2, n3] = np.random.random_integers(1, 10, size=3)
nn = n1 + n2 + n3
l1 = [p1 for i in range(n1)]
l2 = [p2 for i in range(n2)]
l3 = [p3 for i in range(n3)]
p = l1 + l2 + l3
b1 = binom(n=n1, p=p1)
b2 = binom(n=n2, p=p2)
b3 = binom(n=n3, p=p3)
k = np.random.randint(0, nn + 1)
chi_bn = 0
for j in range(0, k+1):
for i in range(0, j+1):
chi_bn += b1.pmf(i) * b2.pmf(j - i) * b3.pmf(k - j)
pb = PoiBin(p)
chi_pb = pb.pmf(k)
assert np.all(np.around(chi_bn, decimals=10) == np.around(chi_pb,
decimals=10))
示例12: _symmetrical_uncertainty
def _symmetrical_uncertainty(X, Y):
"""Symmetrical uncertainty, Press et al., 1988."""
from Orange.preprocess._relieff import contingency_table
X, Y = np.around(X), np.around(Y)
cont = contingency_table(X, Y)
ig = InfoGain().from_contingency(cont, 1)
return 2 * ig / (_entropy(cont.sum(0)) + _entropy(cont.sum(1)))
示例13: _plotRound
def _plotRound(self, values):
"""
A function round an array-like object while maintaining the
amount of entries. This is needed for the isolines since we
want the labels to look pretty (=rounding), but we do not
know the spacing of the lines. A fixed number of digits after
rounding might lead to reduced array size.
"""
inVal = numpy.unique(numpy.sort(numpy.array(values)))
output = inVal[1:] * 0.0
digits = -1
limit = 10
lim = inVal * 0.0 + 10
# remove less from the numbers until same length,
# more than 10 significant digits does not really
# make sense, does it?
while len(inVal) > len(output) and digits < limit:
digits += 1
val = ( numpy.around(numpy.log10(numpy.abs(inVal))) * -1) + digits + 1
val = numpy.where(val < lim, val, lim)
val = numpy.where(val >-lim, val, -lim)
output = numpy.zeros(inVal.shape)
for i in range(len(inVal)):
output[i] = numpy.around(inVal[i],decimals=int(val[i]))
output = numpy.unique(output)
return output
示例14: __init__
def __init__(self, parser, k, startIndex=-1, parallel = True, batch=True):
if startIndex==-1:
startIndex = k
self.Data = parser
self.names = self.Data.getNames()
self.k = k
self.clusters = KMeans(k, n_jobs=1 - 2*(not parallel),n_init=10)
self.props = self.Data.getProperties()
self.artefacts = np.atleast_2d(self.Data.getList(self.props[0]))
for attr in self.Data.getProperties()[1:]:
self.artefacts = np.append(self.artefacts,np.atleast_2d(self.Data.getList(attr)),axis=0)
self.artefacts = self.artefacts.T
self.times = self.Data.getList()
zipped = zip(self.times,self.artefacts,self.names)
zipped = sorted(zipped,key=lambda x: x[0])
unzipped = zip(*zipped)
self.times = list(unzipped[0])
self.artefacts = np.array(unzipped[1])
self.names = list(unzipped[2])
if batch:
self.trainAll()
self.currentIndex = len(self.names)-1
else:
self.currentIndex = startIndex
self.noveltyList = np.zeros(len(self.artefacts))
while self.currentIndex+1 < len(self.names) and self.times[self.currentIndex+1]==self.times[self.currentIndex]:
self.currentIndex +=1
while self.currentIndex < len(self.names):
self.train()
newArtefacts = [self.currentIndex+1]
while newArtefacts[-1]+1 < len(self.names) and self.times[newArtefacts[-1]+1]==self.times[newArtefacts[0]]:
newArtefacts.append(newArtefacts[-1]+1)
novelties = []
for i,a in enumerate(self.names[newArtefacts[0]:newArtefacts[-1]+1]):
dist,cluster = self.novelty(a,normedDistance=False)
time=self.times[self.names.index(a)]
novelties.append((dist/self.sizes[cluster],cluster,time,a))
self.noveltyList[self.currentIndex+i] = novelties[-1][0]
novelties = sorted(novelties,key=lambda x: x[0])
scales = {}
translates = {}
for k in self.Data.pastCalc.keys():
if k in self.props:
scales[k] = self.Data.pastCalc[k]['std']
translates[k] = self.Data.pastCalc[k]['avg']
for n in novelties[::-1]:
cent = np.copy(self.centroids[n[1]])
art = np.copy(self.artefacts[self.names.index(n[3])])
c = self.clusters.predict(art)[0]
for i,v in enumerate(self.props):
cent[i] = np.around(cent[i] * scales[v] + translates[v],decimals=1)
art[i] = np.around(art[i] * scales[v] + translates[v],decimals=1)
print 'Closest cluster to',n[3],'(released',str(n[2])+') was #'+str(n[1]),'with distance',str(n[0])+'. Actual cluster was',str(c)+'.'
if n[0] > 1:
print 'Attrs: RAM ROM CPU DDia DWid DLen Wid Len Dep Vol Mass DPI'
print 'Cluster:',cent
print 'Design: ',art
print 'Diff: ',art-cent
self.increment(len(newArtefacts))
示例15: print_errors
def print_errors(self):
"""
Print all errors metrics.
Note:
For better printing format, install :mod:`prettytable`.
"""
self.calc_metrics()
try:
from prettytable import PrettyTable
table = PrettyTable(["Error", "Value"])
table.align["Error"] = "l"
table.align["Value"] = "l"
for error in sorted(self.dict_errors.keys()):
table.add_row([error, np.around(self.dict_errors[error], decimals=8)])
print()
print(table.get_string(sortby="Error"))
print()
except ImportError:
print("For better table format install 'prettytable' module.")
print()
for error in sorted(self.dict_errors.keys()):
print(error, np.around(self.dict_errors[error], decimals=8))
print()