当前位置: 首页>>代码示例>>Python>>正文


Python numpy.arcsinh函数代码示例

本文整理汇总了Python中numpy.arcsinh函数的典型用法代码示例。如果您正苦于以下问题:Python arcsinh函数的具体用法?Python arcsinh怎么用?Python arcsinh使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了arcsinh函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: int_pot_2D_moi

 def int_pot_2D_moi(self, xp, yp, x, R, h, basis_func):
     """FWD model function. Incorporates the Method of Images.
     Returns contribution of a point xp,yp, belonging to a basis source
     support centered at (0,0) to the potential measured at (x,0),
     integrated over xp,yp gives the potential generated by a
     basis source element centered at (0,0) at point (x,0)
     #Eq 20, Ness(2015)
     Parameters
     ----------
     xp, yp : floats or np.arrays
         point or set of points where function should be calculated
     x :  float
         position at which potential is being measured
     R : float
         The size of the basis function
     h : float
         thickness of slice
     basis_func : method
         Fuction of the basis source
     Returns
     -------
     pot : float
     """
     L = ((x-xp)**2 + yp**2)**(0.5)
     if L < 0.00001:
         L = 0.00001
     correction = np.arcsinh((h-(2*h*self.iters))/L) + np.arcsinh((h+(2*h*self.iters))/L)
     pot = np.arcsinh(h/L) + np.sum(self.iter_factor*correction)
     dist = np.sqrt(xp**2 + yp**2)
     pot *= basis_func(dist, R)  # Eq 20, Ness et.al.
     return pot
开发者ID:Neuroinflab,项目名称:kCSD-python,代码行数:31,代码来源:KCSD.py

示例2: plot_IQU

def plot_IQU(solution, title, col, ncol=6, coord='C'):
    # Es=solution[np.array(final_index).tolist()].reshape((4, len(final_index)/4))
    # I = Es[0] + Es[3]
    # Q = Es[0] - Es[3]
    # U = Es[1] + Es[2]
    IQUV = sol2map(solution)
    IQUV.shape = (4, IQUV.shape[0] / 4)
    I = IQUV[0]
    Q = IQUV[1]
    U = IQUV[2]
    V = IQUV[3]
    pangle = 180 * np.arctan2(Q, U) / 2 / PI
    plotcoordtmp = coord
    hpv.mollview(np.log10(I), min=0, max=4, coord=plotcoordtmp, title=title, nest=True, sub=(4, ncol, col))

    hpv.mollview((Q ** 2 + U ** 2) ** .5 / I, min=0, max=1, coord=plotcoordtmp, title=title, nest=True,
                 sub=(4, ncol, ncol + col))
    from matplotlib import cm
    cool_cmap = cm.hsv
    cool_cmap.set_under("w")  # sets background to white
    hpv.mollview(pangle, min=-90, max=90, coord=plotcoordtmp, title=title, nest=True, sub=(4, ncol, 2 * ncol + col),
                 cmap=cool_cmap)

    hpv.mollview(np.arcsinh(V) / np.log(10), min=-np.arcsinh(10. ** 4) / np.log(10),
                 max=np.arcsinh(10. ** 4) / np.log(10), coord=plotcoordtmp, title=title, nest=True,
                 sub=(4, ncol, 3 * ncol + col))
    if col == ncol:
        plt.show()
开发者ID:jeffzhen,项目名称:simulate_visibilities,代码行数:28,代码来源:map_making_dynamic_polarized_fast_cholesky.py

示例3: Scale_asinh

def Scale_asinh(inputArray, scale_min=None, scale_max=None, non_linear=2.0):
    """Scale_asinh(inputArray, scale_min=None, scale_max=None, non_linear=2.0)
    Performs asinh scaling of the input numpy array.
    (from Min-Su Shin, Princeton)
    
    inputArray: image data array
    scale_min (None): minimum data value
        use inputArray.min() if None
    scale_max (None): maximum data value
        use inputArray.max() if None
    non_linear (2.0): non-linearity factor
    
    >>> scaledArray = Scale_asinh(inputArray)
    """
    imageData=numpy.array(inputArray, copy=True)
    
    if scale_min == None:
        scale_min = imageData.min()
    if scale_max == None:
        scale_max = imageData.max()
    
    factor = numpy.arcsinh((scale_max - scale_min)/non_linear)
    indices0 = numpy.where(imageData < scale_min)
    indices1 = numpy.where((imageData >= scale_min) & (imageData <= scale_max))
    indices2 = numpy.where(imageData > scale_max)
    imageData[indices0] = 0.0
    imageData[indices2] = 1.0
    imageData[indices1] = numpy.arcsinh((imageData[indices1] - scale_min)/non_linear)/factor
    return imageData
开发者ID:bretonr,项目名称:pyastrolib,代码行数:29,代码来源:display.py

示例4: imstretch

 def imstretch(self):
     data = np.clip(self.data_array, self.threshold[0], self.threshold[1])
     if self.mode == "linear":
         pass
     elif self.mode == "logarithmic":
         data = np.reciprocal(1 + np.power(0.5 / data, self.factor))
     elif self.mode == "gamma":
         data = np.power(data, self.factor)
     elif self.mode == "arcsinh":
         mn = np.nanmin(data)
         mx = np.nanmax(data)
         tmp = bytescale(data, high=1.0)
         beta = np.clip(self.factor, 0.0, self.factor)
         sclbeta = (beta - mn) / (mx - mn)
         sclbeta = np.clip(sclbeta, 1.0e-12, sclbeta)
         nonlinearity = 1.0 / sclbeta
         extrema = np.arcsinh(np.array([0.0, nonlinearity]))
         data = np.clip(np.arcsinh(data * nonlinearity), extrema[0], extrema[1])
     elif self.mode == "square root":
         data = np.sqrt(np.fabs(data)) * np.sign(data)
     elif self.mode == "histogram equalization":
         imhist, bins = np.histogram(data.flatten(), 256, normed=True)
         cdf = imhist.cumsum()  # cumulative distribution function
         cdf = 255 * cdf / cdf[-1]  # normalize
         im2 = np.interp(data.flatten(), bins[:-1], cdf)
         data = im2.reshape(data.shape)
     self.scaled = bytescale(data).flatten().tolist()
开发者ID:crawfordsm,项目名称:ir-reduce,代码行数:27,代码来源:fitsimage.py

示例5: asinh

def asinh(inputArray, scale_min=None, scale_max=None, non_linear=2.0):
	"""Performs asinh scaling of the input numpy array.

	@type inputArray: numpy array
	@param inputArray: image data array
	@type scale_min: float
	@param scale_min: minimum data value
	@type scale_max: float
	@param scale_max: maximum data value
	@type non_linear: float
	@param non_linear: non-linearity factor
	@rtype: numpy array
	@return: image data array
	
	"""		
    
	print "img_scale : asinh"
	imageData=numpy.array(inputArray, copy=True)
	
	if scale_min == None:
		scale_min = imageData.min()
	if scale_max == None:
		scale_max = imageData.max()
	factor = numpy.arcsinh((scale_max - scale_min)/non_linear)
	indices0 = numpy.where(imageData < scale_min)
	indices1 = numpy.where((imageData >= scale_min) & (imageData <= scale_max))
	indices2 = numpy.where(imageData > scale_max)
	imageData[indices0] = 0.0
	imageData[indices2] = 1.0
	imageData[indices1] = numpy.arcsinh((imageData[indices1] - \
	scale_min)/non_linear)/factor

	return imageData
开发者ID:Zeklandia,项目名称:quickimage,代码行数:33,代码来源:img_scale.py

示例6: load_minibatch

    def load_minibatch(self, filepath, nimg, farts, gridsize, cg, num,cg_additional=1,twoclasses=False):
        """
        Load a mini batch of images and their labels. 
        Labels need to be converted to tensorflow
        format

        inputs:
        filepath -- Path where the files are located
        nimg -- Number of images in the total batch
        farts -- Fraction of artifacts
        gridsize -- Number of pixels to a side
        cg -- Coarsegraining factor 
        num -- The minibatch number 
        cg_additional -- additional coursegraining to perform on the fly
        """
            
        X = np.load('{0}/X_{1}_{2}_{3}_{4}_mb{5}.npy'.format(filepath, nimg, farts, gridsize, cg, num))
        y = np.load('{0}/y_{1}_{2}_{3}_{4}_mb{5}.npy'.format(filepath, nimg, farts, gridsize, cg, num))
        X[X==-99] = np.nan
        if cg_additional!=1:
            X = np.mean(np.mean(X.reshape([X.shape[0],gridsize//cg,gridsize//cg//cg_additional,cg_additional]),axis=3).T.reshape(gridsize//cg//cg_additional,gridsize//cg//cg_additional,cg_additional,X.shape[0]),axis=2).T.reshape([X.shape[0],(gridsize//cg//cg_additional)**2])
        X = 255*(np.arcsinh(X)-np.atleast_2d(np.arcsinh(np.nanmin(X,axis=1))).T)/np.atleast_2d((np.arcsinh(np.nanmax(X,axis=1))-np.arcsinh(np.nanmin(X,axis=1)))).T
        X[np.isnan(X)] = 0
        #X -= np.atleast_2d(np.mean(X,axis=1)).T
        #print(np.nanmean(X, axis=1))

        ey = self.convert_labels(y, twoclasses)

        return X, ey
开发者ID:wmorning,项目名称:inDianajonES,代码行数:29,代码来源:ConvNNet.py

示例7: test_arcsinh

    def test_arcsinh(self):
        import math
        from numpy import arcsinh

        for v in [float("inf"), float("-inf"), 1.0, math.e]:
            assert math.asinh(v) == arcsinh(v)
        assert math.isnan(arcsinh(float("nan")))
开发者ID:Qointum,项目名称:pypy,代码行数:7,代码来源:test_ufuncs.py

示例8: test_asinh

 def test_asinh(self):
     """Test arcsinh scaling."""
     img = scale_image(DATA, scale='asinh')
     mean, median, stddev = sigmaclip_stats(DATA, sigma=3.0)
     z = (mean + (2.0 * stddev)) / 2.
     ref = np.arcsinh(DATASCL / z) / np.arcsinh(1.0 / z)
     assert_allclose(img, ref, atol=0, rtol=1.e-5)
开发者ID:astrofrog,项目名称:imageutils,代码行数:7,代码来源:test_scale_image.py

示例9: __call__

    def __call__(self, value):
        self.autoscale_None(value)  # set vmin, vmax if unset
        inverted = self.vmax <= self.vmin

        hi, lo = max(self.vmin, self.vmax), min(self.vmin, self.vmax)
        ra = hi - lo
        mid = lo + ra * self.bias
        mn = mid - ra * self.contrast
        mx = mid + ra * self.contrast

        if self.stretch == "linear":
            result = (value - mn) * (1.0 / (mx - mn))
            result = np.clip(result, 0, 1)
        elif self.stretch == "arcsinh":
            b = max(self.bias, 1e-5)
            c = self.contrast
            result = (value - lo) / (1.0 * (hi - lo))
            result = np.arcsinh(result / b) / np.arcsinh((b + c) / b)
            result = np.clip(result, 0, 1)
        elif self.stretch == "sqrt":
            result = (value - mn) * (1.0 / (mx - mn))
            result = np.clip(result, 0, 1)
            result = np.sqrt(result)
        else:
            raise TypeError("Invalid stretch: %s" % self.stretch)

        if inverted:
            result = 1 - result

        return result
开发者ID:hihihippp,项目名称:glue,代码行数:30,代码来源:layer_artist.py

示例10: scale_two_arcsinh

def scale_two_arcsinh(x,up1,up2,down1,down2,m="normal"):
    
    if m != "inverse":
        if x >= 0: return up1*np.arcsinh(x*up2)
        if x < 0: return down1*np.arcsinh(x*down2)
    else:
        if x >= 0: return 1./up2*np.sinh(x/up1)
        if x < 0: return 1./down2*np.sinh(x/down1)
开发者ID:danmoser,项目名称:pyhdust,代码行数:8,代码来源:__init__.py

示例11: newspace

 def newspace(high):
     Smax = high
     K = exact
     deps = 1./size * (np.arcsinh((Smax - K)*(1/density)) - np.arcsinh(-K/density))
     eps = np.arcsinh(-K/density) + np.arange(size)*deps
     space = K + density * np.sinh(eps)
     space -= min(space)
     return space
开发者ID:johntyree,项目名称:fd_adi,代码行数:8,代码来源:utils.py

示例12: test_arcsinh

def test_arcsinh():
    a = afnumpy.random.random((2,3))
    b = numpy.array(a)
    fassert(afnumpy.arcsinh(a), numpy.arcsinh(b))
    c = afnumpy.random.random((2,3))
    d = numpy.array(a)
    fassert(afnumpy.arcsinh(a, out=c), numpy.arcsinh(b, out=d))
    fassert(c, d)
开发者ID:daurer,项目名称:afnumpy,代码行数:8,代码来源:test_lib.py

示例13: __call__

    def __call__(self, values, out=None, clip=True):

        values = _prepare(values, out=out, clip=clip)

        np.true_divide(values, self.a, out=values)
        np.arcsinh(values, out=values)
        np.true_divide(values, np.arcsinh(1. / self.a), out=values)

        return values
开发者ID:adonath,项目名称:imageutils,代码行数:9,代码来源:stretch.py

示例14: elec_catenary_hyperbolic_lowest_proj

def elec_catenary_hyperbolic_lowest_proj ( T0,  w, l, h):
    Lh0 = elec_catenary_hyperbolic_length_equal_high (T0, w, l)
    if Lh0 != 0.:
        a = l/2. - T0/w*np.arcsinh(h/Lh0) 
        b = l/2. + T0/w*np.arcsinh(h/Lh0)
    else:
        a = l/2.
        b = l/2.
    return a
开发者ID:kamijawa,项目名称:ogc_server,代码行数:9,代码来源:catenary.py

示例15: asinh

def asinh(x):
    """
    Inverse hyperbolic sine
    """
    if isinstance(x, UncertainFunction):
        mcpts = np.arcsinh(x._mcpts)
        return UncertainFunction(mcpts)
    else:
        return np.arcsinh(x)
开发者ID:mkouhia,项目名称:mcerp,代码行数:9,代码来源:umath.py


注:本文中的numpy.arcsinh函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。