本文整理汇总了Python中numpy.append函数的典型用法代码示例。如果您正苦于以下问题:Python append函数的具体用法?Python append怎么用?Python append使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了append函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_mean_vmax
def get_mean_vmax():
hostvmaxs = []
hostvmax25s = []
hostvmax75s = []
twentyfifth, fifty, seventyfifth = get_percentile()
rootdir = "/Users/catherinefielder/Documents/Research_Halos/HaloDetail"
for subdir, dirs, files in os.walk(rootdir):
head, tail = os.path.split(subdir)
haloname = tail
for file in files:
if file.endswith("_columnsadded_final"):
values = ascii.read(
os.path.join(subdir, file), format="commented_header"
) # Get full path and access file
hostvmax = values[1]["host_vmax"]
hostvmaxs = np.append(hostvmaxs, hostvmax)
twentyfifth = np.percentile(hostvmaxs, 25)
seventyfifth = np.percentile(hostvmaxs, 75)
for i in range(0, len(hostvmaxs)):
if hostvmaxs[i] >= seventyfifth:
hostvmax75s = np.append(hostvmax75s, hostvmaxs[i])
elif hostvmaxs[i] < twentyfifth:
hostvmax25s = np.append(hostvmax25s, hostvmaxs[i])
else:
continue
sumvmax = np.sum(hostvmaxs)
meanvmax = np.divide(sumvmax, len(hostvmaxs))
mean75 = np.mean(hostvmax75s)
mean25 = np.mean(hostvmax25s)
print "mean"
print meanvmax
print mean75
print mean25
return meanvmax, mean75, mean25
示例2: iir_bandstops
def iir_bandstops(fstops, fs, order=4):
"""ellip notch filter
fstops is a list of entries of the form [frequency (Hz), df, df2]
where df is the pass width and df2 is the stop width (narrower
than the pass width). Use caution if passing more than one freq at a time,
because the filter response might behave in ways you don't expect.
"""
nyq = 0.5 * fs
# Zeros zd, poles pd, and gain kd for the digital filter
zd = np.array([])
pd = np.array([])
kd = 1
# Notches
for fstopData in fstops:
fstop = fstopData[0]
df = fstopData[1]
df2 = fstopData[2]
low = (fstop - df) / nyq
high = (fstop + df) / nyq
low2 = (fstop - df2) / nyq
high2 = (fstop + df2) / nyq
z, p, k = iirdesign([low,high], [low2,high2], gpass=1, gstop=6,
ftype='ellip', output='zpk')
zd = np.append(zd,z)
pd = np.append(pd,p)
# Set gain to one at 100 Hz...better not notch there
bPrelim,aPrelim = zpk2tf(zd, pd, 1)
outFreq, outg0 = freqz(bPrelim, aPrelim, 100/nyq)
# Return the numerator and denominator of the digital filter
b,a = zpk2tf(zd,pd,k)
return b, a
示例3: loadParticles
def loadParticles(filename):
file = open(filename)
particlePools = {}
for line in file.readlines():
#print line
if line[0] == '#':
continue
id, x, y, z, r = line.split()
if not id in particlePools:
particlePools[id] = Particles()
pool = particlePools[id]
pool.pos = numpy.append(pool.pos,
[[float(x), float(y), float(z)]],
axis=0)
pool.radii = numpy.append(pool.radii, float(r))
file.close()
return particlePools
示例4: append_new_point
def append_new_point(self, y, x=None):
self._axis_y_array = np.append(self._axis_y_array, y)
if x:
self._axis_x_array = np.append(self._axis_x_array, x)
else:
self._axis_x_array = np.arange(len(self._axis_y_array))
if self.max_plot_points:
if self._axis_y_array.size > self.max_plot_points:
self._axis_y_array = np.delete(self._axis_y_array, 0)
self._axis_x_array = np.delete(self._axis_x_array, 0)
if self.single_curve is None:
self.single_curve, = self.axes.plot(
self._axis_y_array, linewidth=2, marker="s"
)
else:
self.axes.fill(self._axis_y_array, "r", linewidth=2)
self._axis_y_limits[1] = (
self._axis_y_array.max() + self._axis_y_array.max() * 0.05
)
self.axes.set_ylim(self._axis_y_limits)
self.single_curve.set_xdata(self._axis_x_array)
self.single_curve.set_ydata(self._axis_y_array)
self.axes.relim()
self.axes.autoscale_view()
self.fig.canvas.draw()
self.fig.canvas.flush_events()
self.axes.grid(True)
# TODO move y lims as propery
self.axes.set_ylim(
(0, self._axis_y_array.max() + self._axis_y_array.max() * 0.05)
)
示例5: get_data
def get_data(self,name):
obj = self.read_csv(name)
date = []
date.append(obj[0]["Date"])
high=np.array([],dtype="float32")
low=np.array([],dtype="float32")
vol=np.array([],dtype="float32")
aver=np.array([],dtype="float32")
before_high=float(obj[0]["High"])
before_low=float(obj[0]["Low"])
before_vol=float(obj[0]["Volume"])
for day in obj[1:]:
date.append(day["Date"])
aver=np.append(aver,(float(day["High"])+float(day["Low"]))/2)
high=np.append(high,(float(day["High"])-before_high)/before_high)
low=np.append(low,(float(day["Low"])-before_low)/before_low)
vol=np.append(vol,(float(day["Volume"])-before_vol)/before_vol)
before_high=float(day["High"])
before_low=float(day["Low"])
before_vol=float(day["Volume"])
output={"start":date[0],"date":date,"high":high,"low":low,"vol":vol,"aver":aver}
return output
示例6: read_fits
def read_fits(ccd, order_frame, soldir, interp=False):
rm, xpos, target, res, w_c, y1, y2 = mode_setup_information(ccd.header)
if target=='upper':
target=True
else:
target=False
xarr=np.array([])
farr=np.array([])
oarr=np.array([])
min_order = int(order_frame.data[order_frame.data>0].min())
max_order = int(order_frame.data[order_frame.data>0].max())
for n_order in np.arange(min_order, max_order):
try:
shift_dict, ws = pickle.load(open(soldir+'sol_%i.pkl' % n_order))
except:
continue
x, f = xextract_order(ccd, order_frame, n_order, shift_dict, target=target, interp=interp)
o=np.ones_like(x)*n_order
xarr=np.append(xarr,x)
farr=np.append(farr,f)
oarr=np.append(oarr,o)
return xarr,farr,oarr
示例7: _indtosub_converter
def _indtosub_converter(dims, order='F', onebased=True):
"""Converter for changing linear indexing to subscript indexing
See also
--------
Series.indtosub
"""
_check_order(order)
def indtosub_inline_onebased(k, dimprod):
return tuple(map(lambda (x, y): int(mod(ceil(float(k)/y) - 1, x) + 1), dimprod))
def indtosub_inline_zerobased(k, dimprod):
return tuple(map(lambda (x, y): int(mod(ceil(float(k+1)/y) - 1, x)), dimprod))
inline_fcn = indtosub_inline_onebased if onebased else indtosub_inline_zerobased
if size(dims) > 1:
if order == 'F':
dimprod = zip(dims, append(1, cumprod(dims)[0:-1]))
else:
dimprod = zip(dims, append(1, cumprod(dims[::-1])[0:-1])[::-1])
converter = lambda k: inline_fcn(k, dimprod)
else:
converter = lambda k: (k,)
return converter
示例8: BED_extract
def BED_extract(path, nfft):
list_data = numpy.array([])
list_label = numpy.array([])
"""
dic = {'W':[1,0],'L':[0,1],'E':[0,1],'A':[0,1],'F':[1,0],'T':[0,1],'N':[0.5,0.5]}
"""
dic = {'W':[0,1],'L':[0,1],'E':[0,1],'A':[0,1],'F':[1,0],'T':[0,1],'N':[0.5,0.5]}
for root, dir, files in os.walk(path):
rootpath = os.path.join(os.path.abspath(path), root)
for file in files:
if os.path.splitext(file)[1].lower()=='.wav':
filepath = os.path.join(rootpath, file)
SR, X = wavfile.read(filepath)
_, _, spec = mfcc(X, fs=SR, nfft=(nfft*2))
list_data = numpy.append(list_data, numpy.mean(spec, axis=0)[:nfft]/numpy.max(spec))
list_label = numpy.append(list_label, dic[file[5]])
list_data = numpy.reshape(list_data, (len(list_data)/nfft, nfft))
list_label = numpy.reshape(list_label, (len(list_label)/label_length, label_length))
return list_data, list_label
示例9: ReadGeoPolygonLst
def ReadGeoPolygonLst(self, polygonLst ):
"""
Read GeoPolygon List from a txt file
longitude latitude
"""
f = open(polygonLst, 'r');
NumbC=0;
newpolygon=False;
for lines in f.readlines():
lines=lines.split();
if newpolygon==True:
lon=lines[0];
if lon=='>':
newpolygon=False;
self.append(geopolygon)
continue;
else:
lon=float(lines[0]);
lat=float(lines[1]);
geopolygon.lonArr=np.append(geopolygon.lonArr, lon);
geopolygon.latArr=np.append(geopolygon.latArr, lat);
a=lines[0];
b=lines[1];
if a=='#' and b!='@P':
continue;
if b=='@P':
NumbC=NumbC+1;
newpolygon=True;
geopolygon=GeoPolygon();
continue;
f.close()
print 'End of reading', NumbC, 'geological polygons';
return
示例10: cap
def cap(guess_vector):
"""
This takes the Euler equations, and sets them equal to zero for an f-solve
Remember that Keq was found by taking the derivative of the sum of the
utility functions, with respect to k in each time period, and that
leq was the same, but because l only shows up in 1 period, it has a
much smaller term.
### Paramaters ###
guess_vector: The first half is the intial guess for the kapital, and
the second half is the intial guess for the labor
"""
#equations for keq
ks = np.zeros(periods)
ks[1:] = guess_vector[:periods-1]
ls = guess_vector[periods-1:]
kk = ks[:-1]
kk1 = ks[1:]
kk2 = np.zeros(periods-1)
kk2[:-1] = ks[2:]
lk = ls[:-1]
lk1 = ls[1:]
#equation for leq
ll = np.copy(ls)
kl = np.copy(ks)
kl1 = np.zeros(periods)
kl1[:-1] = kl[1:]
w = wage(ks, ls)
r = rate(ks, ls)
keq = ((lk*w+(1.+r-delta)*kk - kk1)**-gamma - (beta*(1+r-delta)*(lk1*w+(1+r-delta)*kk1-kk2)**-gamma))
leq = ((w*(ll*w + (1+r-delta)*kl-kl1)**-gamma)-(1-ll)**-sigma)
error = np.append(keq, leq)
return np.append(keq, leq)
示例11: Mie_ab
def Mie_ab(m,x):
# http://pymiescatt.readthedocs.io/en/latest/forward.html#Mie_ab
mx = m*x
nmax = np.round(2+x+4*(x**(1/3)))
nmx = np.round(max(nmax,np.abs(mx))+16)
n = np.arange(1,nmax+1)
nu = n + 0.5
sx = np.sqrt(0.5*np.pi*x)
px = sx*jv(nu,x)
p1x = np.append(np.sin(x), px[0:int(nmax)-1])
chx = -sx*yv(nu,x)
ch1x = np.append(np.cos(x), chx[0:int(nmax)-1])
gsx = px-(0+1j)*chx
gs1x = p1x-(0+1j)*ch1x
# B&H Equation 4.89
Dn = np.zeros(int(nmx),dtype=complex)
for i in range(int(nmx)-1,1,-1):
Dn[i-1] = (i/mx)-(1/(Dn[i]+i/mx))
D = Dn[1:int(nmax)+1] # Dn(mx), drop terms beyond nMax
da = D/m+n/x
db = m*D+n/x
an = (da*px-p1x)/(da*gsx-gs1x)
bn = (db*px-p1x)/(db*gsx-gs1x)
return an, bn
示例12: read_power
def read_power(file, datadir='data/'):
"""
29-apr-2009/dintrans: coded
t,dat=read_power(name_power_file)
Read a power spectra file like 'data/poweru.dat'
"""
filename = path.join(datadir, file)
infile = open(filename, 'r')
lines = infile.readlines()
infile.close()
#
# find the number of blocks (t,power) that should be read
#
dim=read_dim(datadir=datadir)
nblock=int(len(lines)/int(N.ceil(dim.nxgrid/2/8.)+1))
#
with open(filename, 'r') as infile:
t=N.zeros(1, dtype='Float32')
data=N.zeros(1, dtype='Float32')
for i in range(nblock):
st=infile.readline()
t=N.append(t, float(st))
for ii in range(int(N.ceil(dim.nxgrid/2/8.))):
st=infile.readline()
data=N.append(data, N.asarray(st.split()).astype('f'))
t=t[1:] ; data=data[1:]
nt=len(t) ; nk=int(len(data)/nt)
data=data.reshape(nt, nk)
return t, data
示例13: find_offset_old
def find_offset_old(self,datafile, nonlinmin, nonlinmax, exclude, threshold):
'''find_offset is used to determine the systematic offset present
in the experimental setup that causes data to not be symmetric
about zero input angle. It reads in the output of laserBench and
returns the offset (in degrees)'''
input_a, output_a = np.loadtxt(datafile,usecols=(0,1),unpack=True)
for e in exclude:
did = np.where(input_a == e)
output_a = np.delete(output_a, did)
input_a = np.delete(input_a, did)
pidx = np.where(input_a > nonlinmax)
nidx = np.where(input_a < nonlinmin)
in_a = np.append(input_a[nidx],input_a[pidx])
out_a = np.append(-1*output_a[nidx],output_a[pidx])
error = np.zeros(in_a.size)+1
b = 1000.
offset = 0.
while abs(b) > threshold:
m, b = ADE.fit_line(in_a,out_a,error)
offset += b
in_a += b
return offset
示例14: FindBigStuff
def FindBigStuff(data,xsd =3,sd_method = 'Quian'):
#s = np.std(data,0) * xsd
#print s
spikelist = np.array([0,0,0])[None,...]
m,n = data.shape
s = np.zeros(n)
for i in range(n):
x = data[:,i]
if sd_method == 'Quian':
s[i] = xsd * np.median(np.abs(x)) / 0.6745
elif sd_method == 'STD':
s[i] = np.std(x) * xsd
taux = np.diff(np.where(abs(x)>s[i],1,0))
times = np.nonzero(taux==1)[0]
times2 = np.nonzero(taux==-1)[0]
if len(times) !=0:
if len(times)-1 == len(times2):
times2 = np.append(times2,m)
elif len(times) == len(times2)-1:
times = np.append(0,times)
chs = np.ones(times.shape)*i
aux = np.append(chs[...,None],times[...,None],1)
aux = np.append(aux,times2[...,None],1)
spikelist = np.append(spikelist,aux,0)
return np.delete(spikelist, (0), axis=0),s
示例15: arraySlidingWindow
def arraySlidingWindow(result_array, sliding_window_size, filter_ratio):
array_length = np.size(result_array)
buffer_array = np.zeros((1), dtype = np.int)
for index in range(0, array_length - sliding_window_size):
window_score = np.sum(result_array[index: index + sliding_window_size])
if window_score > (sliding_window_size * filter_ratio):
buffer_array = np.append(buffer_array, 1)
else:
buffer_array = np.append(buffer_array, 0)
buffer_array= np.delete(buffer_array, 0)
# print buffer_array
length = np.size(buffer_array)
flag_array = np.zeros((length), dtype = np.int)
pre_value = 0
for buffer_index , value in enumerate(buffer_array):
if (pre_value - value) == -1:
flag_array[buffer_index] = 1
elif(pre_value - value) == 1:
flag_array[buffer_index] = -1
else:
pass
pre_value = value
return flag_array