本文整理汇总了Python中numpy.any函数的典型用法代码示例。如果您正苦于以下问题:Python any函数的具体用法?Python any怎么用?Python any使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了any函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _testUniformSampleMultiDimensional
def _testUniformSampleMultiDimensional(self):
# DISABLED: Please enable this test once b/issues/30149644 is resolved.
with self.test_session():
batch_size = 2
a_v = [3.0, 22.0]
b_v = [13.0, 35.0]
a = constant_op.constant([a_v] * batch_size)
b = constant_op.constant([b_v] * batch_size)
uniform = uniform_lib.Uniform(low=a, high=b)
n_v = 100000
n = constant_op.constant(n_v)
samples = uniform.sample(n)
self.assertEqual(samples.get_shape(), (n_v, batch_size, 2))
sample_values = self.evaluate(samples)
self.assertFalse(
np.any(sample_values[:, 0, 0] < a_v[0]) or
np.any(sample_values[:, 0, 0] >= b_v[0]))
self.assertFalse(
np.any(sample_values[:, 0, 1] < a_v[1]) or
np.any(sample_values[:, 0, 1] >= b_v[1]))
self.assertAllClose(
sample_values[:, 0, 0].mean(), (a_v[0] + b_v[0]) / 2, atol=1e-2)
self.assertAllClose(
sample_values[:, 0, 1].mean(), (a_v[1] + b_v[1]) / 2, atol=1e-2)
示例2: testDtype
def testDtype(self):
with self.test_session():
d = array_ops.fill([2, 3], 12., name="fill")
self.assertEqual(d.get_shape(), [2, 3])
# Test default type for both constant size and dynamic size
z = array_ops.zeros([2, 3])
self.assertEqual(z.dtype, dtypes_lib.float32)
self.assertEqual([2, 3], z.get_shape())
self.assertAllEqual(z.eval(), np.zeros([2, 3]))
z = array_ops.zeros(array_ops.shape(d))
self.assertEqual(z.dtype, dtypes_lib.float32)
self.assertEqual([2, 3], z.get_shape())
self.assertAllEqual(z.eval(), np.zeros([2, 3]))
# Test explicit type control
for dtype in [
dtypes_lib.float32, dtypes_lib.float64, dtypes_lib.int32,
dtypes_lib.uint8, dtypes_lib.int16, dtypes_lib.int8,
dtypes_lib.complex64, dtypes_lib.complex128, dtypes_lib.int64,
dtypes_lib.bool, dtypes_lib.string
]:
z = array_ops.zeros([2, 3], dtype=dtype)
self.assertEqual(z.dtype, dtype)
self.assertEqual([2, 3], z.get_shape())
z_value = z.eval()
self.assertFalse(np.any(z_value))
self.assertEqual((2, 3), z_value.shape)
z = array_ops.zeros(array_ops.shape(d), dtype=dtype)
self.assertEqual(z.dtype, dtype)
self.assertEqual([2, 3], z.get_shape())
z_value = z.eval()
self.assertFalse(np.any(z_value))
self.assertEqual((2, 3), z_value.shape)
示例3: tag_sites
def tag_sites(self, scaled_positions, symprec=1e-3):
"""Returns an integer array of the same length as *scaled_positions*,
tagging all equivalent atoms with the same index.
Example:
>>> from ase.lattice.spacegroup import Spacegroup
>>> sg = Spacegroup(225) # fcc
>>> sg.tag_sites([[0.0, 0.0, 0.0],
... [0.5, 0.5, 0.0],
... [1.0, 0.0, 0.0],
... [0.5, 0.0, 0.0]])
array([0, 0, 0, 1])
"""
scaled = np.array(scaled_positions, ndmin=2)
scaled %= 1.0
scaled %= 1.0
tags = -np.ones((len(scaled), ), dtype=int)
mask = np.ones((len(scaled), ), dtype=np.bool)
rot, trans = self.get_op()
i = 0
while mask.any():
pos = scaled[mask][0]
sympos = np.dot(rot, pos) + trans
# Must be done twice, see the scaled_positions.py test
sympos %= 1.0
sympos %= 1.0
m = ~np.all(np.any(np.abs(scaled[np.newaxis,:,:] -
sympos[:,np.newaxis,:]) > symprec,
axis=2), axis=0)
assert not np.any((~mask) & m)
tags[m] = i
mask &= ~m
i += 1
return tags
示例4: allowed_region
def allowed_region( V_nj, ave_j ):
# read PCs
PC1 = V_nj[0]
PC2 = V_nj[1]
n_band = len( PC1 )
band_ticks = np.arange( n_band )
x_ticks = np.linspace(-0.4,0.2,RESOLUTION)
y_ticks = np.linspace(-0.2,0.4,RESOLUTION)
x_mesh, y_mesh, band_mesh = np.meshgrid( x_ticks, y_ticks, band_ticks, indexing='ij' )
vec_mesh = x_mesh * PC1[ band_mesh ] + y_mesh * PC2[ band_mesh ] + ave_j[ band_mesh ]
x_grid, y_grid = np.meshgrid( x_ticks, y_ticks, indexing='ij' )
prohibited_grid = np.zeros_like( x_grid )
for ii in xrange( len( x_ticks ) ) :
for jj in xrange( len( y_ticks ) ) :
if np.any( vec_mesh[ii][jj] < 0. ) :
prohibited_grid[ii][jj] = 1
if np.any( vec_mesh[ii][jj] > 1. ) :
prohibited_grid[ii][jj] = 3
elif np.any( vec_mesh[ii][jj] > 1. ) :
prohibited_grid[ii][jj] = 2
else :
prohibited_grid[ii][jj] = 0
return x_grid, y_grid, prohibited_grid
示例5: predict
def predict(self, session, X, y=None):
"""Make predictions from the provided model."""
# If y is given, the loss is also calculated
# We deactivate dropout by setting it to 1
dp = 1
losses = []
results = []
if np.any(y):
data = data_iterator(X, y, batch_size=self.config.batch_size,
label_size=self.config.label_size, shuffle=False)
else:
data = data_iterator(X, batch_size=self.config.batch_size,
label_size=self.config.label_size, shuffle=False)
for step, (x, y) in enumerate(data):
feed = self.create_feed_dict(input_batch=x, dropout=dp)
if np.any(y):
feed[self.labels_placeholder] = y
loss, preds = session.run(
[self.loss, self.predictions], feed_dict=feed)
losses.append(loss)
else:
preds = session.run(self.predictions, feed_dict=feed)
predicted_indices = preds.argmax(axis=1)
results.extend(predicted_indices)
return np.mean(losses), results
示例6: test_using_gpu_3
def test_using_gpu_3(self):
if theano.config.device.find('gpu') > -1:
from theano import function, config, shared, sandbox, Out
import theano.tensor as T
import numpy
import time
vlen = 10 * 30 * 70 # 10 x #cores x # threads per core
iters = 10
rng = numpy.random.RandomState(22)
x = shared(numpy.asarray(rng.rand(vlen), config.floatX))
f = function([],
Out(sandbox.cuda.basic_ops.gpu_from_host(T.exp(x)),
borrow=True))
# print f.maker.fgraph.toposort()
t0 = time.time()
for i in xrange(iters):
r = f()
t1 = time.time()
print 'Looping %d times took' % iters, t1 - t0, 'seconds'
print 'Result is', r
print 'Numpy result is', numpy.asarray(r)
if numpy.any([isinstance(x.op, T.Elemwise)
for x in f.maker.fgraph.toposort()]):
print 'Used the cpu'
else:
print 'Used the gpu'
assert not numpy.any([isinstance(x.op, T.Elemwise)
for x in f.maker.fgraph.toposort()])
示例7: fill_betweenx_discontinuous
def fill_betweenx_discontinuous(ax, ymin, ymax, x, freq=1, **kwargs):
"""Fill betwwen x even if x is discontinuous clusters
Parameters
----------
ax : axis
x : list
Returns
-------
ax : axis
"""
x = np.array(x)
min_gap = 1.1 / freq
while np.any(x):
# If with single time point
if len(x) > 1:
xmax = np.where((x[1:] - x[:-1]) > min_gap)[0]
else:
xmax = [0]
# If continuous
if not np.any(xmax):
xmax = [len(x) - 1]
ax.fill_betweenx((ymin, ymax), x[0], x[xmax[0]], **kwargs)
# remove from list
x = x[(xmax[0] + 1) :]
return ax
示例8: get_polar_motion
def get_polar_motion(time):
"""
gets the two polar motion components in radians for use with apio13
"""
# Get the polar motion from the IERS table
xp, yp, status = iers.IERS_Auto.open().pm_xy(time, return_status=True)
wmsg = None
if np.any(status == iers.TIME_BEFORE_IERS_RANGE):
wmsg = ('Tried to get polar motions for times before IERS data is '
'valid. Defaulting to polar motion from the 50-yr mean for those. '
'This may affect precision at the 10s of arcsec level')
xp.ravel()[status.ravel() == iers.TIME_BEFORE_IERS_RANGE] = _DEFAULT_PM[0]
yp.ravel()[status.ravel() == iers.TIME_BEFORE_IERS_RANGE] = _DEFAULT_PM[1]
warnings.warn(wmsg, AstropyWarning)
if np.any(status == iers.TIME_BEYOND_IERS_RANGE):
wmsg = ('Tried to get polar motions for times after IERS data is '
'valid. Defaulting to polar motion from the 50-yr mean for those. '
'This may affect precision at the 10s of arcsec level')
xp.ravel()[status.ravel() == iers.TIME_BEYOND_IERS_RANGE] = _DEFAULT_PM[0]
yp.ravel()[status.ravel() == iers.TIME_BEYOND_IERS_RANGE] = _DEFAULT_PM[1]
warnings.warn(wmsg, AstropyWarning)
return xp.to(u.radian).value, yp.to(u.radian).value
示例9: backward
def backward(self, top, propagate_down, bottom):
h=bottom[0].data.shape[2]
w=bottom[0].data.shape[3]
num_proposals = bottom[1].data.shape[0]
fbox = self.fbox
bottom[0].diff[...] = 0
for b in np.arange(num_proposals):
if np.any(self.act[b]==True):
wb=fbox[b,2]-fbox[b,0]
hb=fbox[b,3]-fbox[b,1]
if hb==0 or wb==0: #bounding box with size 0
pass
elif h==hb and w==wb: #bounding box with size of the image
pass
else:
bottom[0].diff[0,self.act[b],:,:] += bottom[1].data[b,self.act[b],np.newaxis,np.newaxis]/(h*w-hb*wb) #negative
bottom[0].diff[0,self.act[b],fbox[b,1]:fbox[b,3]+1,fbox[b,0]:fbox[b,2]+1] += -bottom[1].data[b,self.act[b],np.newaxis,np.newaxis]/(h*w-hb*wb) #negative
bottom[0].diff[0,self.act[b],fbox[b,1]:fbox[b,3]+1,fbox[b,0]:fbox[b,2]+1] += -bottom[1].data[b,self.act[b],np.newaxis,np.newaxis]/(hb*wb) #positive
bottom[0].diff[...] *= self.myloss_weight
bottom[1].diff[...] = self.myloss_weight*self.hinge
if np.any(np.isnan(bottom[0].diff)):
print "Nan error"
dsfsf
if np.any(np.isnan(bottom[1].diff)):
print "Nan error"
dsfsf
示例10: sample_representer_points
def sample_representer_points(self):
# Sample representer points only in the
# configuration space by setting all environmental
# variables to 1
D = np.where(self.is_env == 0)[0].shape[0]
lower = self.lower[np.where(self.is_env == 0)]
upper = self.upper[np.where(self.is_env == 0)]
self.sampling_acquisition.update(self.model)
for i in range(5):
restarts = np.random.uniform(low=lower,
high=upper,
size=(self.Nb, D))
sampler = emcee.EnsembleSampler(self.Nb, D,
self.sampling_acquisition_wrapper)
self.zb, self.lmb, _ = sampler.run_mcmc(restarts, 50)
if not np.any(np.isinf(self.lmb)):
break
else:
print("Infinity")
if np.any(np.isinf(self.lmb)):
raise ValueError("Could not sample valid representer points! LogEI is -infinity")
if len(self.zb.shape) == 1:
self.zb = self.zb[:, None]
if len(self.lmb.shape) == 1:
self.lmb = self.lmb[:, None]
# Project representer points to subspace
proj = np.ones([self.zb.shape[0],
self.upper[self.is_env == 1].shape[0]])
proj *= self.upper[self.is_env == 1].shape[0]
self.zb = np.concatenate((self.zb, proj), axis=1)
示例11: algebraic2parametric
def algebraic2parametric(coeff):
'''
Based on matlab function "ellipse_param.m" which accompanies
"Least-Squares Fitting of Circles and Ellipses", W. Gander, G. H. Golub, R. Strebel,
BIT Numerical Mathematics, Springer 1994
convert the coefficients (a,b,c,d,e,f) of the algebraic equation:
ax^2 + bxy + cy^2 + dx + ey + f = 0
to the parameters of the parametric equation. The parameters are
returned as a dictionary containing:
center - center of the ellipse
a - major axis
b - minor axis
alpha - angle of major axis
convention note: alpha is measured as positive values towards the y-axis
'''
#print coeff
#print ("A=%.3f B=%.3f C=%.3f D=%.3f E=%.3f F=%.3f"
# %(coeff[0], coeff[1], coeff[2], coeff[3], coeff[4], coeff[5],))
if numpy.any(numpy.isnan(coeff)) or numpy.any(numpy.isinf(coeff)):
return None
A = numpy.array((coeff[0], coeff[1]/2, coeff[1]/2, coeff[2]))
A.shape = 2,2
bb = numpy.asarray(coeff[3:5])
c = coeff[5]
D,Q = scipy.linalg.eig(A)
D = D.real
det = D[0]*D[1]
if det <= 0:
return None
else:
bs = numpy.dot(Q.transpose(), bb)
alpha = numpy.arctan2(Q[1,0], Q[0,0])
zs = scipy.linalg.solve(-2*numpy.diagflat(D), bs)
z = numpy.dot(Q, zs)
h = numpy.dot(-bs.transpose(), zs) / 2 - c
a = numpy.sqrt(h/D[0])
b = numpy.sqrt(h/D[1])
## correct backwards major/minor axes
## 'major axis as a, minor axis as b'
if b > a:
temp = b
b = a
a = temp
alpha = math.pi/2 + alpha
#print "alpha", alpha
if alpha <= -math.pi/2:
alpha += math.pi
elif alpha > math.pi/2:
alpha -= math.pi
return {'center':z, 'a':a, 'b':b, 'alpha':alpha}
示例12: collide
def collide(self):
for a in self.actors:
a.collision_prepare()
for i, ai in enumerate(self.actors):
if isinstance(ai, ParticleActor):
ai.collision_self()
for j, aj in enumerate(self.actors):
if isinstance(aj, ParticleActor):
continue
if i == j: continue
info = spatial.Info(ai.spatial_grid, aj.spatial_mesh, i==j)
mask = info.triangle != -1
active = np.flatnonzero(mask) # active vertex idx
if np.any(mask):# and not isinstance(ai, StaticActor):
triangle = info.triangle[active]
bary = info.bary[active]
velocity = aj.velocity[aj.mesh.faces[triangle]]
velocity = np.einsum('vtc,vt->vc', velocity, bary)
relative_velocity = ai.velocity[active] - velocity
friction = 1e-2
stiffness = 1e1
force = info.depth[active][:, None] * info.normal[active] * stiffness - relative_velocity * friction
assert not np.any(np.isnan(force))
np.add.at(ai.force, active, force)
corners = aj.mesh.faces[triangle]
for i in range(3):
np.add.at(aj.force, corners[:, i], -bary[:, [i]] * force)
示例13: testBinds
def testBinds(self):
ds = normalFeatureDataset()
ds_data = ds.samples.copy()
ds_chunks = ds.chunks.copy()
self.failUnless(N.all(ds.samples == ds_data)) # sanity check
funcs = ['zscore', 'coarsenChunks']
if externals.exists('scipy'):
funcs.append('detrend')
for f in funcs:
eval('ds.%s()' % f)
self.failUnless(N.any(ds.samples != ds_data) or
N.any(ds.chunks != ds_chunks),
msg="We should have modified original dataset with %s" % f)
ds.samples = ds_data.copy()
ds.chunks = ds_chunks.copy()
# and some which should just return results
for f in ['aggregateFeatures', 'removeInvariantFeatures',
'getSamplesPerChunkLabel']:
res = eval('ds.%s()' % f)
self.failUnless(res is not None,
msg='We should have got result from function %s' % f)
self.failUnless(N.all(ds.samples == ds_data),
msg="Function %s should have not modified original dataset" % f)
示例14: check_obs_scheme
def check_obs_scheme(self):
" Checks the internal validity of provided observation schemes "
# check sub_pops
idx_union = np.sort(self._sub_pops[0])
i = 1
while idx_union.size < self._p and i < len(self._sub_pops):
idx_union = np.union1d(idx_union, self._sub_pops[i])
i += 1
if idx_union.size != self._p or np.any(idx_union!=np.arange(self._p)):
raise Exception(('all subpopulations together have to cover '
'exactly all included observed varibles y_i in y.'
'This is not the case. Change the difinition of '
'subpopulations in variable sub_pops or reduce '
'the number of observed variables p. '
'The union of indices of all subpopulations is'),
idx_union )
# check obs_time
if not self._obs_time[-1]==self._T:
raise Exception(('Entries of obs_time give the respective ends of '
'the periods of observation for any '
'subpopulation. Hence the last entry of obs_time '
'has to be the full recording length. The last '
'entry of obs_time before is '), self._obs_time[-1])
if np.any(np.diff(self._obs_time)<1):
raise Exception(('lengths of observation have to be at least 1. '
'Minimal observation time for a subpopulation: '),
np.min(np.diff(self._obs_time)))
# check obs_pops
if not self._obs_time.size == self._obs_pops.size:
raise Exception(('each entry of obs_pops gives the index of the '
'subpopulation observed up to the respective '
'time given in obs_time. Thus the sizes of the '
'two arrays have to match. They do not. '
'no. of subpop. switch points and no. of '
'subpopulations ovserved up to switch points '
'are '), (self._obs_time.size, self._obs_pops.size))
idx_pops = np.sort(np.unique(self._obs_pops))
if not np.min(idx_pops)==0:
raise Exception(('first subpopulation has to have index 0, but '
'is given the index '), np.min(idx_pops))
elif not idx_pops.size == len(self._sub_pops):
raise Exception(('number of specified subpopulations in variable '
'sub_pops does not meet the number of '
'subpopulations indexed in variable obs_pops. '
'Delete subpopulations that are never observed, '
'or change the observed subpopulations in '
'variable obs_pops accordingly. The number of '
'indexed subpopulations is '),
len(self._sub_pops))
elif not np.all(np.diff(idx_pops)==1):
raise Exception(('subpopulation indices have to be consecutive '
'integers from 0 to the total number of '
'subpopulations. This is not the case. '
'Given subpopulation indices are '),
idx_pops)
示例15: pop_planes
def pop_planes(geometry, kwargs):
# Convert miller index specifications to normal vectors
miller_defs = kwargs.pop("planes_miller", None)
if miller_defs is not None:
if np.any(np.all(abs(miller_defs[:,0:3]) < EPSILON, axis=1)):
error("Emtpy miller index tuple")
miller_defs[:,0:3] = miller_to_normal(
np.dot(geometry.latvecs, geometry.bravais_cell),
miller_defs[:,0:3])
else:
miller_defs = np.zeros((0, 4), dtype=float)
# Convert plane normal vector specifications into cartesian coords.
normal_defs = kwargs.pop("planes_normal", None)
if normal_defs is not None:
normal_defs[:,0:3] = geometry.coord_transform(
normal_defs[:,0:3],
kwargs.pop("planes_normal_coordsys", "lattice"))
if np.any(np.all(abs(normal_defs[:,0:3]) < EPSILON, axis=1)):
error("Emtpy normal vector definition")
else:
normal_defs = np.zeros((0, 4), dtype=float)
# Append two defintions
planes_normal = np.vstack(( miller_defs, normal_defs ))
return planes_normal