当前位置: 首页>>代码示例>>Python>>正文


Python numpy.alen函数代码示例

本文整理汇总了Python中numpy.alen函数的典型用法代码示例。如果您正苦于以下问题:Python alen函数的具体用法?Python alen怎么用?Python alen使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了alen函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_data

 def get_data(self, orig):
     data = self.serializer.clipboard_data
     data_len = np.alen(data)
     orig_len = np.alen(orig)
     if data_len > orig_len > 1:
         data_len = orig_len
     return data[0:data_len]
开发者ID:robmcmullen,项目名称:omnivore,代码行数:7,代码来源:clipboard_commands.py

示例2: eccentricity

def eccentricity(data, exponent=1.,  metricpar={}, callback=None):
    if data.ndim==1:
        assert metricpar=={}, 'No optional parameter is allowed for a dissimilarity matrix.'
        ds = squareform(data, force='tomatrix')
        if exponent in (np.inf, 'Inf', 'inf'):
            return ds.max(axis=0)
        elif exponent==1.:
            ds = np.power(ds, exponent)
            return ds.sum(axis=0)/float(np.alen(ds))
        else:
            ds = np.power(ds, exponent)
            return np.power(ds.sum(axis=0)/float(np.alen(ds)), 1./exponent)
    else:
        progress = progressreporter(callback)
        N = np.alen(data)
        ecc = np.empty(N)
        if exponent in (np.inf, 'Inf', 'inf'):
            for i in range(N):
                ecc[i] = cdist(data[(i,),:], data, **metricpar).max()
                progress((i+1)*100//N)
        elif exponent==1.:
            for i in range(N):
                ecc[i] = cdist(data[(i,),:], data, **metricpar).sum()/float(N)
                progress((i+1)*100//N)
        else:
            for i in range(N):
                dsum = np.power(cdist(data[(i,),:], data, **metricpar),
                                exponent).sum()
                ecc[i] = np.power(dsum/float(N), 1./exponent)
                progress((i+1)*100//N)
        return ecc
开发者ID:Sandy4321,项目名称:mapper,代码行数:31,代码来源:filters.py

示例3: candlestick_trades

def candlestick_trades(samplet, lookback, t, px, sz):
    #requires = ["CONTIGUOUS", "ALIGNED"]

    lib = _load_candlestick_lib()
    lib.c_candlestick.restype = None
    lib.c_candlestick.argtypes = [np.ctypeslib.c_intp,
                                  np.ctypeslib.ndpointer(float,
                                                         flags="aligned, contiguous"),
                                  ctypes.c_double,
                                  np.ctypeslib.c_intp,
                                  np.ctypeslib.ndpointer(float, ndim=1,
                                                         flags="aligned, contiguous"),
                                  np.ctypeslib.ndpointer(float, ndim=1,
                                                         flags="aligned, contiguous"),
                                  np.ctypeslib.ndpointer(float, ndim=1,
                                                         flags="aligned, contiguous"),
                                  np.ctypeslib.ndpointer(float, ndim=1,
                                                         flags="aligned, contiguous,"
                                                               "writeable")]

    # samplet = np.require(samplet, float, requires)
    # c = np.empty_like(a)
    samplelen = np.alen(samplet)
    datalen = np.alen(t)
    res = np.empty(6*samplelen)
    lib.c_candlestick(samplelen, samplet, lookback, datalen, t, px, sz, res)
    return res
开发者ID:tambu-j,项目名称:signals,代码行数:27,代码来源:candlestick.py

示例4: _do_problem

    def _do_problem(self, problem, integrator, old_api=True, **integrator_params):
        jac = None
        if hasattr(problem, 'jac'):
            jac = problem.jac
        res = problem.res

        ig = dae(integrator, res, jacfn=jac, old_api=old_api)
        ig.set_options(old_api=old_api, **integrator_params)
        z = empty((1+len(problem.stop_t),alen(problem.z0)), float)
        zprime = empty((1+len(problem.stop_t),alen(problem.z0)), float)
        ist = ig.init_step(0., problem.z0, problem.zprime0, z[0], zprime[0])
        i=1
        for time in problem.stop_t:
            soln = ig.step(time, z[i], zprime[i])
            if old_api:
                flag, rt = soln
            else:
                flag = soln.flag
                rt = soln.values.t
            i += 1
            if integrator == 'ida':
                assert flag==0, (problem.info(), flag)
            else:
                assert flag > 0, (problem.info(), flag)

        assert problem.verify(array(z), array(zprime),  [0.]+problem.stop_t), \
                    (problem.info(),)
开发者ID:adhalanay,项目名称:odes,代码行数:27,代码来源:test_dae.py

示例5: competence

 def competence(stochastic):
     """
     The competence function for TWalk.
     """
     if stochastic.dtype in float_dtypes and np.alen(stochastic.value) > 4:
         if np.alen(stochastic.value) >=10:
             return 2
         return 1
     return 0
开发者ID:along1x,项目名称:pymc,代码行数:9,代码来源:TWalk.py

示例6: tableSum

	def tableSum(self):
		"""docstring for tableSum"""
		self.fsum = 0
		for i in xrange(numpy.alen(self.newx)):
			for j in xrange(numpy.alen(self._angles)):
				self.fsum += self.newx[i]*1.15*self._angles[j]*math.fabs(self.interpedgrid[i,j])
		
		
		return self.fsum
开发者ID:jlerche,项目名称:muon_inflight_decay,代码行数:9,代码来源:muonsim3.py

示例7: create_binary

def create_binary(filename, num, outfile, options):
    """Create patterned binary data with the first 7 characters of the filename
    interleaved with a byte ramp, e.g.  A128   \x00A128   \x01A128   \x02 etc.
    """
    root, _ = outfile.split(".")
    prefix = ("%s        " % root)[0:8]
    a = np.fromstring(prefix, dtype=np.uint8)
    b = np.tile(a, (num / np.alen(a)) + 1)[0:num]
    b[7::8] = np.arange(np.alen(b) / 8, dtype=np.uint8)
    with open(filename, "wb") as fh:
        fh.write(b.tostring())
开发者ID:pombredanne,项目名称:atrcopy,代码行数:11,代码来源:create_binary.py

示例8: add_xexboot_header

def add_xexboot_header(bytes, bootcode=None, title="DEMO", author="an atari user"):
    sec_size = 128
    xex_size = len(bytes)
    num_sectors = (xex_size + sec_size - 1) / sec_size
    padded_size = num_sectors * sec_size
    if xex_size < padded_size:
        bytes = np.append(bytes, np.zeros([padded_size - xex_size], dtype=np.uint8))
    paragraphs = padded_size / 16
    
    if bootcode is None:
        bootcode = np.fromstring(xexboot_header, dtype=np.uint8)
    else:
        # don't insert title or author in user supplied bootcode; would have to
        # assume that the user supplied everything desired in their own code!
        title = ""
        author = ""
    bootsize = np.alen(bootcode)
    v = bootcode[9:11].view(dtype="<u2")
    v[0] = xex_size
    
    bootsectors = np.zeros([384], dtype=np.uint8)
    bootsectors[0:bootsize] = bootcode

    insert_string(bootsectors, 268, title, 0b11000000)
    insert_string(bootsectors, 308, author, 0b01000000)

    image = np.append(bootsectors, bytes)
    return image
开发者ID:pombredanne,项目名称:atrcopy,代码行数:28,代码来源:kboot.py

示例9: classify

def classify(data, trueclass, traindata, final_set,a):
	X=np.vstack(data[traindata[:,1],:])
	#np.savetxt("parkinsons/foo.csv",x, fmt='%0.5f',delimiter=",")
	b=[]
	b.append(traindata[:,1])
	
	C = np.searchsorted(a, b)
	D = np.delete(np.arange(np.alen(a)), C)
	D= np.array(D)
	D=D.reshape(D.size,-1)
	
	true_labels = np.ravel(np.vstack(trueclass[D[:,0],0]))
	test_data = np.vstack(data[D[:,0],:])
	#print test_data.shape
	#np.savetxt("parkinsons/foo.csv",test_data, fmt='%0.6s')
	y=np.ravel(np.vstack(traindata[:,0]))
	
	clf=svm.SVC(kernel='linear')
	clf.fit(X,y)
	
	labels=clf.predict(test_data) #predicting true labels for the remaining rows 
	predicted_labels = labels.reshape(labels.size,-1)
	np.savetxt("parkinsons/foo%d.csv"%final_set, np.concatenate((test_data, predicted_labels,np.vstack(trueclass[D[:,0],0])), axis=1),fmt='%0.5f',delimiter=",")
	
	print true_labels
	print labels
	misclassify_rate = 1-accuracy_score(true_labels,labels)
	print "Misclassification rate = %f" %misclassify_rate
	return misclassify_rate
开发者ID:pranithasurya,项目名称:MachineLearning,代码行数:29,代码来源:ClassifyParkinsons.py

示例10: distance_to_measure

def distance_to_measure(data, k, metricpar={}, callback=None):
    r'''.. math::

  \mathit{distance\_to\_measure}(x)  = \sqrt{\frac 1k\sum^k_{j=1}d(x,\nu_j(x))^2},

where :math:`\nu_1(x),\ldots,\nu_k(x)` are the :math:`k`  nearest neighbors of :math:`x` in the data set. Again, the first nearest neighbor is :math:`x` itself with distance 0.

Reference: [R4]_.
'''
    if data.ndim==1:
        assert metricpar=={}, ('No optional parameter is allowed for a '
                               'dissimilarity matrix.')
        # dm data
        ds = squareform(data, force='tomatrix')
        N = np.alen(ds)
        r = np.empty(N)
        for i in range(N):
            s = np.sort(ds[i,:])
            assert s[0]==0.
            d = s[1:k]
            r[i] = np.sqrt((d*d).sum()/float(k))
        return r
    else:
        # vector data
        if metricpar=={} or metricpar['metric']=='euclidean':
            from scipy.spatial import cKDTree
            T = cKDTree(data)
            d, j = T.query(data, k+1)
            d = d[:,1:k]
            return np.sqrt((d*d).sum(axis=1)/k)
        else:
            print(kwargs)
            raise ValueError('Not implemented')
开发者ID:Sandy4321,项目名称:mapper,代码行数:33,代码来源:filters.py

示例11: kNN_distance

def kNN_distance(data, k, metricpar={}, callback=None):
    r'''The distance to the :math:`k`-th nearest neighbor as an (inverse) measure of density.

Note how the number of nearest neighbors is understood: :math:`k=1`, the first neighbor, makes no sense for a filter function since the first nearest neighbor of a data point is always the point itself, and hence this filter function is constantly zero. The parameter :math:`k=2` measures the distance from :math:`x_i` to the nearest data point other than  :math:`x_i` itself.
    '''
    if data.ndim==1:
        assert metricpar=={}, ('No optional parameter is allowed for a '
                               'dissimilarity matrix.')
        # dm data
        ds = squareform(data, force='tomatrix')
        N = np.alen(ds)
        r = np.empty(N)
        for i in range(N):
            s = np.sort(ds[i,:])
            assert s[0]==0.
            r[i] = s[k]
        return r
    else:
        # vector data
        if metricpar=={} or metricpar['metric']=='euclidean':
            from scipy.spatial import cKDTree
            T = cKDTree(data)
            d, j = T.query(data, k+1)
            return d[:,k]
        else:
            print(metricpar)
            raise ValueError('Not implemented')
开发者ID:Sandy4321,项目名称:mapper,代码行数:27,代码来源:filters.py

示例12: availability

    def availability(self):
        availability={}

        for key in self.magnet_sets:
            availability[key]=range(np.alen(self.magnet_sets[key]))
            
        return availability
开发者ID:DiamondLightSource,项目名称:Opt-ID,代码行数:7,代码来源:magnets.py

示例13: testLBP

def testLBP (format, formatMask, path, output) :
    dataset = pd.read_csv(path)
    idxCls = dataset['idx']
   # cnts = dataset['Cnt']
    fnList = dataset['path']
  #  out = open(output, 'w')
    lbps = list(map(lambda x: local_binary_pattern(cv2.bitwise_and(imread(format.format(x)),imread(formatMask.format(x))), lbpP, lbpR, lbpMethod), fnList))
    histograms = list(map(lambda x:  np.histogram(x, bins=range(int(np.max(lbps)) + 1))[0], lbps))
    distances = prw.pairwise_distances(histograms, metric='l1')
    np.fill_diagonal(distances, math.inf)
    guessedClasses = np.apply_along_axis(lambda x: np.argmin(x), 1, distances)
    scores = np.apply_along_axis(lambda x: np.min(x), 1, distances)
    correct = list(map(lambda i: idxCls[guessedClasses[i]] == idxCls[i], range(0, np.alen(idxCls))))
   # out.write(str(np.average(correct)))
  #  fpr, tpr, thresholds = roc_curve(correct, scores, pos_label=1)
  #  pyplot.plot(tpr, fpr)
   # pyplot.show()
    with open(output + 'lbp_distances.csv', 'w', newline='') as fp:
        a = csv.writer(fp, delimiter=',')
        a.writerows(distances)

    with open(output + 'lbp_guessedClasses.csv', 'w', newline='') as fp:
        a = csv.writer(fp, delimiter=',')
        a.writerow(guessedClasses)

    with open(output + 'lbp_correct.csv', 'w', newline='') as fp:
        a = csv.writer(fp, delimiter=',')
        a.writerow(correct)

    with open(output + 'lbp_real.csv', 'w', newline='') as fp:
        a = csv.writer(fp, delimiter=',')
        a.writerow(idxCls)
开发者ID:mariaTatarintseva,项目名称:Diploma,代码行数:32,代码来源:LBPSpeedUp.py

示例14: fit_model

 def fit_model(self):
     if self.similarity_matrix is None:
         self._init_similarity_matrix()
     self.means = []
     for i in xrange(self.dataset.n_items):
         i_ = self.item_user_matrix[i][self.item_user_matrix[i] > 0]
         self.means.append(np.mean(i_) if not np.alen(i_) == 0 else 0)
开发者ID:cenaka,项目名称:board-game-recommend,代码行数:7,代码来源:item_based_knn.py

示例15: recall_gain

def recall_gain(tp, fn, fp, tn):
    """Calculates Recall Gain from the contingency table

    This function calculates Recall Gain from the entries of the contingency
    table: number of true positives (TP), false negatives (FN), false positives
    (FP), and true negatives (TN). More information on Precision-Recall-Gain
    curves and how to cite this work is available at
    http://www.cs.bris.ac.uk/~flach/PRGcurves/.

    Args:
        tp (float) or ([float]): True Positives
        fn (float) or ([float]): False Negatives
        fp (float) or ([float]): False Positives
        tn (float) or ([float]): True Negatives
    Returns:
        (float) or ([float])
    """
    n_pos = tp + fn
    n_neg = fp + tn
    with np.errstate(divide='ignore', invalid='ignore'):
        rg = 1. - (n_pos/n_neg) * (fn/tp)
    if np.alen(rg) > 1:
        rg[tn + fn == 0] = 1
    elif tn + fn == 0:
        rg = 1
    return rg
开发者ID:JohnReid,项目名称:prg,代码行数:26,代码来源:prg.py


注:本文中的numpy.alen函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。