本文整理汇总了Python中numba.targets.imputils.impl_ret_new_ref函数的典型用法代码示例。如果您正苦于以下问题:Python impl_ret_new_ref函数的具体用法?Python impl_ret_new_ref怎么用?Python impl_ret_new_ref使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了impl_ret_new_ref函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_attr_impl
def get_attr_impl(context, builder, typ, value, attr):
"""
Generic getattr() for @jitclass instances.
"""
if attr in typ.struct:
# It's a struct field
inst = context.make_helper(builder, typ, value=value)
data_pointer = inst.data
data = context.make_data_helper(builder, typ.get_data_type(),
ref=data_pointer)
return imputils.impl_ret_borrowed(context, builder,
typ.struct[attr],
getattr(data, _mangle_attr(attr)))
elif attr in typ.jitprops:
# It's a jitted property
getter = typ.jitprops[attr]['get']
sig = templates.signature(None, typ)
dispatcher = types.Dispatcher(getter)
sig = dispatcher.get_call_type(context.typing_context, [typ], {})
call = context.get_function(dispatcher, sig)
out = call(builder, [value])
_add_linking_libs(context, call)
return imputils.impl_ret_new_ref(context, builder, sig.return_type, out)
raise NotImplementedError('attribute {0!r} not implemented'.format(attr))
示例2: imp
def imp(context, builder, sig, args):
instance_type = sig.args[0]
method = instance_type.jitmethods[attr]
disp_type = types.Dispatcher(method)
call = context.get_function(disp_type, sig)
out = call(builder, args)
return imputils.impl_ret_new_ref(context, builder,
sig.return_type, out)
示例3: array_sinc
def array_sinc(context, builder, sig, args):
def array_sinc_impl(arr):
out = numpy.zeros_like(arr)
for index, val in numpy.ndenumerate(arr):
out[index] = numpy.sinc(val)
return out
res = context.compile_internal(builder, array_sinc_impl, sig, args)
return impl_ret_new_ref(context, builder, sig.return_type, res)
示例4: codegen
def codegen(context, builder, signature, args):
# check that the return type is now defined
arrty = signature.return_type
assert arrty.is_precise()
shapes = unpack_tuple(builder, args[0])
# redirect implementation to np.empty
res = _empty_nd_impl(context, builder, arrty, shapes)
return impl_ret_new_ref(context, builder, arrty, res._getvalue())
示例5: array_round
def array_round(context, builder, sig, args):
def array_round_impl(arr, decimals, out):
if arr.shape != out.shape:
raise ValueError("invalid output shape")
for index, val in numpy.ndenumerate(arr):
out[index] = numpy.round(val, decimals)
return out
res = context.compile_internal(builder, array_round_impl, sig, args)
return impl_ret_new_ref(context, builder, sig.return_type, res)
示例6: array_nonzero
def array_nonzero(context, builder, sig, args):
aryty = sig.args[0]
# Return type is a N-tuple of 1D C-contiguous arrays
retty = sig.return_type
outaryty = retty.dtype
ndim = aryty.ndim
nouts = retty.count
ary = make_array(aryty)(context, builder, args[0])
shape = cgutils.unpack_tuple(builder, ary.shape)
strides = cgutils.unpack_tuple(builder, ary.strides)
data = ary.data
layout = aryty.layout
# First count the number of non-zero elements
zero = context.get_constant(types.intp, 0)
one = context.get_constant(types.intp, 1)
count = cgutils.alloca_once_value(builder, zero)
with cgutils.loop_nest(builder, shape, zero.type) as indices:
ptr = cgutils.get_item_pointer2(builder, data, shape, strides,
layout, indices)
val = load_item(context, builder, aryty, ptr)
nz = context.is_true(builder, aryty.dtype, val)
with builder.if_then(nz):
builder.store(builder.add(builder.load(count), one), count)
# Then allocate output arrays of the right size
out_shape = (builder.load(count),)
outs = [_empty_nd_impl(context, builder, outaryty, out_shape)._getvalue()
for i in range(nouts)]
outarys = [make_array(outaryty)(context, builder, out) for out in outs]
out_datas = [out.data for out in outarys]
# And fill them up
index = cgutils.alloca_once_value(builder, zero)
with cgutils.loop_nest(builder, shape, zero.type) as indices:
ptr = cgutils.get_item_pointer2(builder, data, shape, strides,
layout, indices)
val = load_item(context, builder, aryty, ptr)
nz = context.is_true(builder, aryty.dtype, val)
with builder.if_then(nz):
# Store element indices in output arrays
if not indices:
# For a 0-d array, store 0 in the unique output array
indices = (zero,)
cur = builder.load(index)
for i in range(nouts):
ptr = cgutils.get_item_pointer2(builder, out_datas[i],
out_shape, (),
'C', [cur])
store_item(context, builder, outaryty, indices[i], ptr)
builder.store(builder.add(cur, one), index)
tup = context.make_tuple(builder, sig.return_type, outs)
return impl_ret_new_ref(context, builder, sig.return_type, tup)
示例7: dot_2_mv
def dot_2_mv(context, builder, sig, args):
"""
np.dot(matrix, vector)
"""
def dot_impl(a, b):
m, n = a.shape
_n, = b.shape
out = np.empty((m, ), a.dtype)
return np.dot(a, b, out)
res = context.compile_internal(builder, dot_impl, sig, args)
return impl_ret_new_ref(context, builder, sig.return_type, res)
示例8: make_zip_object
def make_zip_object(context, builder, sig, args):
zip_type = sig.return_type
assert len(args) == len(zip_type.source_types)
zipobj = context.make_helper(builder, zip_type)
for i, (arg, srcty) in enumerate(zip(args, sig.args)):
zipobj[i] = call_getiter(context, builder, srcty, arg)
res = zipobj._getvalue()
return impl_ret_new_ref(context, builder, sig.return_type, res)
示例9: build_list
def build_list(context, builder, list_type, items):
"""
Build a list of the given type, containing the given items.
"""
nitems = len(items)
inst = ListInstance.allocate(context, builder, list_type, nitems)
# Populate list
inst.size = context.get_constant(types.intp, nitems)
for i, val in enumerate(items):
inst.setitem(context.get_constant(types.intp, i), val)
return impl_ret_new_ref(context, builder, list_type, inst.value)
示例10: dot_2_vm
def dot_2_vm(context, builder, sig, args):
"""
np.dot(vector, matrix)
"""
def dot_impl(a, b):
m, = a.shape
_m, n = b.shape
out = numpy.empty((n, ), a.dtype)
return numpy.dot(a, b, out)
res = context.compile_internal(builder, dot_impl, sig, args)
return impl_ret_new_ref(context, builder, sig.return_type, res)
示例11: list_pop
def list_pop(context, builder, sig, args):
inst = ListInstance(context, builder, sig.args[0], args[0])
n = inst.size
cgutils.guard_zero(context, builder, n,
(IndexError, "pop from empty list"))
n = builder.sub(n, ir.Constant(n.type, 1))
res = inst.getitem(n)
inst.incref_value(res) # incref the pop'ed element
inst.clear_value(n) # clear the storage space
inst.resize(n)
return impl_ret_new_ref(context, builder, sig.return_type, res)
示例12: set_constructor
def set_constructor(context, builder, sig, args):
set_type = sig.return_type
items_type, = sig.args
items, = args
# If the argument has a len(), preallocate the set so as to
# avoid resizes.
n = call_len(context, builder, items_type, items)
inst = SetInstance.allocate(context, builder, set_type, n)
with for_iter(context, builder, items_type, items) as loop:
inst.add(loop.value)
return impl_ret_new_ref(context, builder, set_type, inst.value)
示例13: array_angle_kwarg
def array_angle_kwarg(context, builder, sig, args):
arg = sig.args[0]
if isinstance(arg.dtype, types.Complex):
retty = arg.dtype.underlying_float
else:
retty = arg.dtype
def array_angle_impl(arr, deg=False):
out = numpy.zeros_like(arr, dtype=retty)
for index, val in numpy.ndenumerate(arr):
out[index] = numpy.angle(val, deg)
return out
res = context.compile_internal(builder, array_angle_impl, sig, args)
return impl_ret_new_ref(context, builder, sig.return_type, res)
示例14: array_angle_kwarg
def array_angle_kwarg(context, builder, sig, args):
arg = sig.args[0]
ret_dtype = sig.return_type.dtype
def array_angle_impl(arr, deg):
out = numpy.zeros_like(arr, dtype=ret_dtype)
for index, val in numpy.ndenumerate(arr):
out[index] = numpy.angle(val, deg)
return out
if len(args) == 1:
args = args + (cgutils.false_bit,)
sig = signature(sig.return_type, *(sig.args + (types.boolean,)))
res = context.compile_internal(builder, array_angle_impl, sig, args)
return impl_ret_new_ref(context, builder, sig.return_type, res)
示例15: array_cumprod
def array_cumprod(context, builder, sig, args):
scalar_dtype = sig.return_type.dtype
dtype = as_dtype(scalar_dtype)
def array_cumprod_impl(arr):
size = 1
for i in arr.shape:
size = size * i
out = numpy.empty(size, dtype)
c = 1
for idx, v in enumerate(arr.flat):
c *= v
out[idx] = c
return out
res = context.compile_internal(builder, array_cumprod_impl, sig, args, locals=dict(c=scalar_dtype))
return impl_ret_new_ref(context, builder, sig.return_type, res)