本文整理汇总了Python中nose.tools.assert_sequence_equal函数的典型用法代码示例。如果您正苦于以下问题:Python assert_sequence_equal函数的具体用法?Python assert_sequence_equal怎么用?Python assert_sequence_equal使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了assert_sequence_equal函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_manual_add_line
def test_manual_add_line(self):
s = self.signal
s.add_xray_lines_markers(["Zn_La"])
nt.assert_sequence_equal(list(s._xray_markers.keys()), ["Zn_La"])
nt.assert_equal(len(s._xray_markers), 1)
# Check that the line has both a vertical line marker and text marker:
nt.assert_equal(len(s._xray_markers["Zn_La"]), 2)
示例2: test_plot_auto_add
def test_plot_auto_add(self):
s = self.signal
s.plot(xray_lines=True)
# Should contain 6 lines
nt.assert_sequence_equal(
sorted(s._xray_markers.keys()),
['Al_Ka', 'Al_Kb', 'Zn_Ka', 'Zn_Kb', 'Zn_La', 'Zn_Lb1'])
示例3: test_group_name_multiple_ports
def test_group_name_multiple_ports(self):
expected = [
Rule(protocol="tcp", from_port=22, to_port=22, security_group_name="default"),
Rule(protocol="tcp", from_port=2812, to_port=2812, security_group_name="default"),
Rule(protocol="tcp", from_port=4001, to_port=4001, security_group_name="default"),
]
assert_sequence_equal(expected, RuleParser.parse("tcp port 22, 2812, 4001 default"))
示例4: test_manual_remove_element
def test_manual_remove_element(self):
s = self.signal
s.add_xray_lines_markers(['Zn_Ka', 'Zn_Kb', 'Zn_La'])
s.remove_xray_lines_markers(['Zn_Kb'])
nt.assert_sequence_equal(
sorted(s._xray_markers.keys()),
['Zn_Ka', 'Zn_La'])
示例5: test_NMF_complex
def test_NMF_complex():
n_samples = 10
n_features = 20
n_components = 3
W = randn_complex(n_samples, n_components)
H = np.random.rand(n_components, n_features) + 0j
# Normalise H
Hnorm = np.linalg.norm(H, axis=1)
H /= Hnorm[:, None]
# Normalise W then order
Wnorm = np.linalg.norm(W, axis=0)
W *= np.arange(n_components, 0, -1) / Wnorm
X = np.dot(W, H)
p = nmf.PinvNMF(n_components, nmf.ComplexMFConstraint(), max_iter=1000,
initialiser=nmf.NMR_svd_initialise)
Wcalc = p.fit_transform(X)
Hcalc = p.components_
Xcalc = np.dot(Wcalc, Hcalc)
# Check properties of Hcalc and Wcalc
assert_sequence_equal(Wcalc.shape, (n_samples, n_components))
assert_sequence_equal(Hcalc.shape, (n_components, n_features))
assert_array_less(MAX_NEGATIVE_FLOAT, Hcalc.real) # Hcalc >= 0
assert_array_equal(0, Hcalc.imag) # Hcalc >= 0
# Check that Hcalc is normalised
assert_array_almost_equal(np.linalg.norm(Hcalc, axis=1), 1)
# N.B. Hcalc is not orthogonal so can't assert H.H' == I
assert_array_almost_equal(X, Xcalc, decimal=3)
示例6: test_NMF_real_normalised
def test_NMF_real_normalised():
n_samples = 10
n_features = 20
n_components = 3
W = np.random.rand(n_samples, n_components)
H = np.random.rand(n_components, n_features)
# Normalise H
Hnorm = np.linalg.norm(H, axis=1)
H /= Hnorm[:, None]
# Normalise U then order
Wnorm = np.linalg.norm(W, axis=0)
W *= np.arange(n_components, 0, -1) / Wnorm
X = np.dot(W, H)
assert_array_less(0, X) # X is strictly greater than 0
p = nmf.ProjectedGradientNMF(n_components, nmf.NMFConstraint_NormaliseH(),
max_iter=1000)
Wcalc = p.fit_transform(X)
Hcalc = p.components_
Xcalc = np.dot(Wcalc, Hcalc)
# Check properties of Hcalc and Wcalc
assert_sequence_equal(Wcalc.shape, (n_samples, n_components))
assert_sequence_equal(Hcalc.shape, (n_components, n_features))
assert_array_less(MAX_NEGATIVE_FLOAT, Wcalc) # Wcalc >= 0
assert_array_less(MAX_NEGATIVE_FLOAT, Hcalc) # Hcalc >= 0
# Check that Hcalc is normalised
assert_array_almost_equal(np.linalg.norm(Hcalc, axis=1), 1)
# N.B. Hcalc is not orthogonal so can't assert H.H' == I
assert_array_almost_equal(X, Xcalc, decimal=3)
示例7: test_NMF_real
def test_NMF_real():
n_samples = 10
n_features = 20
n_components = 3
W = np.random.rand(n_samples, n_components)
H = np.random.rand(n_components, n_features)
# Normalise H
Hnorm = np.linalg.norm(H, axis=1)
H /= Hnorm[:, None]
# Normalise U then order
Wnorm = np.linalg.norm(W, axis=0)
W *= np.arange(n_components, 0, -1) / Wnorm
X = np.dot(W, H)
assert_array_less(0, X) # X is strictly greater than 0
p = nmf.NMF(n_components, tol=1e-5, max_iter=1000)
Wcalc = p.fit_transform(X)
Hcalc = p.components_
Xcalc = np.dot(Wcalc, Hcalc)
# Check properties of Hcalc and Wcalc
assert_sequence_equal(Wcalc.shape, (n_samples, n_components))
assert_sequence_equal(Hcalc.shape, (n_components, n_features))
assert_array_less(MAX_NEGATIVE_FLOAT, Wcalc) # Wcalc >= 0
assert_array_less(MAX_NEGATIVE_FLOAT, Hcalc) # Hcalc >= 0
assert_array_almost_equal(X, Xcalc, decimal=3)
示例8: test_icmp
def test_icmp(self):
expected = [
Rule(protocol="icmp", from_port=0, to_port=0, security_group_name="default"),
Rule(protocol="icmp", from_port=3, to_port=5, security_group_name="default"),
Rule(protocol="icmp", from_port=8, to_port=14, security_group_name="default"),
Rule(protocol="icmp", from_port=40, to_port=40, security_group_name="default")
]
assert_sequence_equal(expected, RuleParser.parse("icmp port 0, 3-5, 8-14, 40 default"))
示例9: check_signal
def check_signal(data, signal):
assert_equals(signal.units, data.units)
assert_sequence_equal(signal.shape, data.shape)
assert_true(np.all(np.asarray(signal) == np.asarray(data)))
try:
assert_equals(signal.sampling_rate, data.sampling_rates[0])
except AttributeError:
pass
示例10: testEventsList
def testEventsList():
assert_sequence_equal(
map(lambda x: (x['name'], x['status']), form.Event.get_events_list()),
[('testEventsList2', 1), ('testEventsList1', 0),
('testEventsList0', -1)])
assert_sequence_equal(
map(lambda x: x['name'], form.Event.get_events_list(2, 1)),
['testEventsList0'])
示例11: check_correct
def check_correct(expected, actual):
assert expected.viewkeys() <= actual.viewkeys(), 'Different keys\nexpected\t{}\nactual\t{}'.format(sorted(expected.keys()), sorted(actual.keys()))
for k in expected:
exp = expected[k]
act = actual[k]
if hasattr(exp, '__iter__') and not hasattr(exp, 'items'):
assert_sequence_equal(exp, act, 'Different on key "{}".\nexpected\t{}\nactual\t{}'.format(k, exp, act))
else:
assert exp == act, 'Different on key "{}".\nexpected\t{}\nactual\t{}'.format(k, exp, act)
return True
示例12: test_geolocate_pass
def test_geolocate_pass():
with open(os.path.join(os.path.dirname(__file__), 'fixtures', 'random_coordinate_pairs.yaml')) as fixtures_file:
fixtures = yaml.load(fixtures_file)
for fixture in fixtures:
test_name = fixture['start_nom']
test_location = fixture.pop('start_loc')
return_geocoder = [geopy.Location(test_name, test_location)]
with mock.patch('geopy.geocoders.GoogleV3.geocode') as mock_geocoder:
mock_geocoder.return_value = return_geocoder
given_loc = Greengraph('first', 'second').geolocate(test_name)
mock_geocoder.assert_any_call(test_name, exactly_one=False)
assert_sequence_equal(test_location, given_loc)
示例13: test_stdin_nonicks
def test_stdin_nonicks(self):
command = loadscores.Command()
command.stdin = StringIO(INPUT)
self.execute(command, include_nicknames=False)
tools.eq_(command.stdout.read(), "Header is:\n\t{}\n".format(HEADER))
tools.eq_(command.stderr.read(), "")
tools.assert_sequence_equal(sorted(fulldocs(StateNameVoter.items.all())), [
{'state_lname_fname': 'NH_BULLWINKLE_BORIS',
'gotv_score': Decimal('-0.009')},
{'state_lname_fname': 'NH_BEARINGTON_JAMES',
'gotv_score': Decimal('-0.1'),
'persuasion_score': Decimal('4.8')},
{'state_lname_fname': 'NH_BEARINGTON_JOHN',
'gotv_score': Decimal('-0.007'),
'persuasion_score': Decimal('4.61')},
{'state_lname_fname': 'NH_ZIP_JOE',
'persuasion_score': Decimal('0'),
'gotv_score': Decimal('0')},
{'state_lname_fname': 'MN_STANTON_JANE',
'gotv_score': Decimal('0.003'),
'persuasion_score': Decimal('4.1')},
{'state_lname_fname': 'NH_ZIP_JOSEPH',
'persuasion_score': Decimal('3.1'),
'gotv_score': Decimal('0.2')},
])
tools.assert_sequence_equal(sorted(fulldocs(StateCityNameVoter.items.all())), [
{'state_city_lname_fname': 'NH_SEABROOK_BULLWINKLE_BORIS',
'gotv_score': Decimal('-0.009')},
{'state_city_lname_fname': 'NH_ST-PAUL_BEARINGTON_JAMES',
'gotv_score': Decimal('-0.1'),
'persuasion_score': Decimal('4.8')},
{'state_city_lname_fname': 'NH_MILTON_BEARINGTON_JOHN',
'gotv_score': Decimal('-0.007'),
'persuasion_score': Decimal('4.61')},
{'state_city_lname_fname': 'NH_LEBANON_ZIP_JOE',
'persuasion_score': Decimal('0'),
'gotv_score': Decimal('0')},
{'state_city_lname_fname': 'MN_ST-PAUL_STANTON_JANE',
'gotv_score': Decimal('0.003'),
'persuasion_score': Decimal('4.88')},
{'state_city_lname_fname': 'MN_BLAINE_STANTON_JANE',
'gotv_score': Decimal('0.005'),
'persuasion_score': Decimal('4.1')},
{'state_city_lname_fname': 'NH_LEBANON_ZIP_JOSEPH',
'persuasion_score': Decimal('3.1'),
'gotv_score': Decimal('0.2')},
])
示例14: test_pandas_iterable
def test_pandas_iterable():
try:
import pandas as pd
except ImportError:
raise SkipTest("Pandas not installed")
# Using a list or series yields equivalent
# color maps, i.e the series isn't seen as
# a single color
lst = ['red', 'blue', 'green']
s = pd.Series(lst)
cm1 = mcolors.ListedColormap(lst, N=5)
cm2 = mcolors.ListedColormap(s, N=5)
assert_sequence_equal(cm1.colors, cm2.colors)
示例15: test_PCA_complex
def test_PCA_complex():
n_samples = 10
n_features = 20
n_components = 3
U = randn_complex(n_samples, n_components)
V = randn_complex(n_components, n_features)
# Make V orthonormal
for i in range(n_components):
for j in range(i):
i_dot_j = np.dot(V[i, :], V[j, :])
# N.B. V_j is already normalised
V[i, :] -= i_dot_j * V[j, :]
Vmean = np.mean(V[i, :])
V[i, :] -= Vmean
Vnorm = np.linalg.norm(V[i, :])
V[i, :] /= Vnorm
# Make U orthonormal, then multiply to get ordering of components
for i in range(n_components):
for j in range(i):
i_dot_j = np.dot(U[:, i], U[:, j])
# N.B. U_j is already normalised
U[:, i] -= i_dot_j * U[:, j]
Umean = np.mean(U[:, i])
U[:, i] -= Umean
Unorm = np.linalg.norm(U[:, i])
U[:, i] /= Unorm
# ensure ordering
U[:, i] *= (n_components - i)
X = np.dot(U, V)
assert_almost_equal(0, np.mean(X))
p = pca.PCA(n_components)
Ucalc = p.fit_transform(X)
Vcalc = p.components_
Xcalc = np.dot(Ucalc, Vcalc)
# Check properties of Vcalc and Ucalc
assert_sequence_equal(Ucalc.shape, U.shape)
assert_sequence_equal(Vcalc.shape, V.shape)
assert_array_almost_equal(np.eye(n_components),
np.dot(Vcalc, np.conj(Vcalc.T)))
assert_almost_diagonal(np.dot(np.conj(Ucalc.T), Ucalc), assert_real=True)
# assert_array_almost_equal(np.diag(np.arange(n_components, 0, -1) ** 2),
# np.dot(Ucalc.T, Ucalc))
assert_array_almost_equal(X, Xcalc)