本文整理汇总了Python中nnabla.parametric_functions.convolution函数的典型用法代码示例。如果您正苦于以下问题:Python convolution函数的具体用法?Python convolution怎么用?Python convolution使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了convolution函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: discriminator
def discriminator(x, maxh=256, test=False, output_hidden=False):
"""
Building discriminator network which maps a (B, 1, 28, 28) input to
a (B, 1).
"""
# Define shortcut functions
def bn(xx):
# Batch normalization
return PF.batch_normalization(xx, batch_stat=not test)
def downsample2(xx, c):
return PF.convolution(xx, c, (3, 3), pad=(1, 1), stride=(2, 2), with_bias=False)
assert maxh / 8 > 0
with nn.parameter_scope("dis"):
# (1, 28, 28) --> (32, 16, 16)
with nn.parameter_scope("conv1"):
c1 = F.elu(bn(PF.convolution(x, maxh / 8,
(3, 3), pad=(3, 3), stride=(2, 2), with_bias=False)))
# (32, 16, 16) --> (64, 8, 8)
with nn.parameter_scope("conv2"):
c2 = F.elu(bn(downsample2(c1, maxh / 4)))
# (64, 8, 8) --> (128, 4, 4)
with nn.parameter_scope("conv3"):
c3 = F.elu(bn(downsample2(c2, maxh / 2)))
# (128, 4, 4) --> (256, 4, 4)
with nn.parameter_scope("conv4"):
c4 = bn(PF.convolution(c3, maxh, (3, 3),
pad=(1, 1), with_bias=False))
# (256, 4, 4) --> (1,)
with nn.parameter_scope("fc1"):
f = PF.affine(c4, 1)
if output_hidden:
return f, [c1, c2, c3, c4]
return f
示例2: test_save_load_parameters
def test_save_load_parameters():
v = nn.Variable([64, 1, 28, 28], need_grad=False)
with nn.parameter_scope("param1"):
with nn.parameter_scope("conv1"):
h = PF.convolution(v, 32, (3, 3))
b = PF.batch_normalization(h, batch_stat=True)
with nn.parameter_scope("conv2"):
h1 = PF.convolution(v, 32, (3, 3))
b2 = PF.batch_normalization(h1, batch_stat=True)
for k, v in iteritems(nn.get_parameters(grad_only=False)):
v.data.cast(np.float32)[...] = np.random.randn(*v.shape)
with nn.parameter_scope("param1"):
param1 = nn.get_parameters(grad_only=False)
nn.save_parameters("tmp.h5")
nn.save_parameters("tmp.protobuf")
with nn.parameter_scope("param2"):
nn.load_parameters('tmp.h5')
param2 = nn.get_parameters(grad_only=False)
with nn.parameter_scope("param3"):
nn.load_parameters('tmp.protobuf')
param3 = nn.get_parameters(grad_only=False)
for par2 in [param2, param3]:
assert param1.keys() == par2.keys() # Check order
for (n1, p1), (n2, p2) in zip(sorted(param1.items()), sorted(par2.items())):
assert n1 == n2
assert np.all(p1.d == p2.d)
assert p1.data.dtype == p2.data.dtype
assert p1.need_grad == p2.need_grad
示例3: res_unit
def res_unit(x, scope_name, dn=False, test=False):
C = x.shape[1]
with nn.parameter_scope(scope_name):
# Conv -> BN -> Relu
with nn.parameter_scope("conv1"):
h = PF.convolution(x, C / 2, kernel=(1, 1), pad=(0, 0),
with_bias=False)
h = PF.batch_normalization(h, batch_stat=not test)
h = F.relu(h)
# Conv -> BN -> Relu
with nn.parameter_scope("conv2"):
h = PF.convolution(h, C / 2, kernel=(3, 3), pad=(1, 1),
with_bias=False)
h = PF.batch_normalization(h, batch_stat=not test)
h = F.relu(h)
# Conv -> BN
with nn.parameter_scope("conv3"):
h = PF.convolution(h, C, kernel=(1, 1), pad=(0, 0),
with_bias=False)
h = PF.batch_normalization(h, batch_stat=not test)
# Residual -> Relu
h = F.relu(h + x)
# Maxpooling
if dn:
h = F.max_pooling(h, kernel=(2, 2), stride=(2, 2))
return h
示例4: res_unit
def res_unit(x, scope):
C = x.shape[1]
with nn.parameter_scope(scope):
with nn.parameter_scope('conv1'):
h = F.elu(bn(PF.convolution(x, C / 2, (1, 1), with_bias=False)))
with nn.parameter_scope('conv2'):
h = F.elu(
bn(PF.convolution(h, C / 2, (3, 3), pad=(1, 1), with_bias=False)))
with nn.parameter_scope('conv3'):
h = bn(PF.convolution(h, C, (1, 1), with_bias=False))
return F.elu(F.add2(h, x, inplace=True))
示例5: mnist_lenet_prediction
def mnist_lenet_prediction(image, test=False):
"""
Construct LeNet for MNIST.
"""
image /= 255.0
c1 = PF.convolution(image, 16, (5, 5), name='conv1')
c1 = F.relu(F.max_pooling(c1, (2, 2)), inplace=True)
c2 = PF.convolution(c1, 16, (5, 5), name='conv2')
c2 = F.relu(F.max_pooling(c2, (2, 2)), inplace=True)
c3 = F.relu(PF.affine(c2, 50, name='fc3'), inplace=True)
c4 = PF.affine(c3, 10, name='fc4')
return c4
示例6: mnist_lenet_feature
def mnist_lenet_feature(image, test=False):
"""
Construct LeNet for MNIST.
"""
c1 = F.elu(PF.convolution(image, 20, (5, 5), name='conv1'))
c1 = F.average_pooling(c1, (2, 2))
c2 = F.elu(PF.convolution(c1, 50, (5, 5), name='conv2'))
c2 = F.average_pooling(c2, (2, 2))
c3 = F.elu(PF.affine(c2, 500, name='fc3'))
c4 = PF.affine(c3, 10, name='fc4')
c5 = PF.affine(c4, 2, name='fc_embed')
return c5
示例7: cifar10_resnet23_prediction
def cifar10_resnet23_prediction(ctx, image, test=False):
"""
Construct ResNet 23
"""
# Residual Unit
def res_unit(x, scope_name, dn=False, test=False):
C = x.shape[1]
with nn.parameter_scope(scope_name):
# Conv -> BN -> Relu
with nn.parameter_scope("conv1"):
h = PF.convolution(x, C / 2, kernel=(1, 1), pad=(0, 0),
with_bias=False)
h = PF.batch_normalization(h, batch_stat=not test)
h = F.relu(h)
# Conv -> BN -> Relu
with nn.parameter_scope("conv2"):
h = PF.convolution(h, C / 2, kernel=(3, 3), pad=(1, 1),
with_bias=False)
h = PF.batch_normalization(h, batch_stat=not test)
h = F.relu(h)
# Conv -> BN
with nn.parameter_scope("conv3"):
h = PF.convolution(h, C, kernel=(1, 1), pad=(0, 0),
with_bias=False)
h = PF.batch_normalization(h, batch_stat=not test)
# Residual -> Relu
h = F.relu(h + x)
# Maxpooling
if dn:
h = F.max_pooling(h, kernel=(2, 2), stride=(2, 2))
return h
# Random generator for using the same init parameters in all devices
nmaps = 64
ncls = 10
# Conv -> BN -> Relu
with nn.context_scope(ctx):
with nn.parameter_scope("conv1"):
h = PF.convolution(image, nmaps, kernel=(3, 3), pad=(1, 1),
with_bias=False)
h = PF.batch_normalization(h, batch_stat=not test)
h = F.relu(h)
h = res_unit(h, "conv2", False) # -> 32x32
h = res_unit(h, "conv3", True) # -> 16x16
h = bn_dropout(h, "bn_dropout1", test)
h = res_unit(h, "conv4", False) # -> 16x16
h = res_unit(h, "conv5", True) # -> 8x8
h = bn_dropout(h, "bn_dropout2", test)
h = res_unit(h, "conv6", False) # -> 8x8
h = res_unit(h, "conv7", True) # -> 4x4
h = bn_dropout(h, "bn_dropout3", test)
h = res_unit(h, "conv8", False) # -> 4x4
h = F.average_pooling(h, kernel=(4, 4)) # -> 1x1
pred = PF.affine(h, ncls)
return pred
示例8: resnet_model
def resnet_model(ctx, x, inmaps=64, act=F.relu, test=False):
# Conv -> BN -> Relu
with nn.context_scope(ctx):
with nn.parameter_scope("conv1"):
h = PF.convolution(x, inmaps, kernel=(3, 3), pad=(1, 1), with_bias=False)
h = PF.batch_normalization(h, decay_rate=0.9, batch_stat=not test)
h = act(h)
h = res_unit(h, "conv2", act, False) # -> 32x32
h = res_unit(h, "conv3", act, True) # -> 16x16
with nn.parameter_scope("bn0"):
h = PF.batch_normalization(h, batch_stat=not test)
if not test:
h = F.dropout(h)
h = res_unit(h, "conv4", act, False) # -> 16x16
h = res_unit(h, "conv5", act, True) # -> 8x8
with nn.parameter_scope("bn1"):
h = PF.batch_normalization(h, batch_stat=not test)
if not test:
h = F.dropout(h)
h = res_unit(h, "conv6", act, False) # -> 8x8
h = res_unit(h, "conv7", act, True) # -> 4x4
with nn.parameter_scope("bn2"):
h = PF.batch_normalization(h, batch_stat=not test)
if not test:
h = F.dropout(h)
h = res_unit(h, "conv8", act, False) # -> 4x4
h = F.average_pooling(h, kernel=(4, 4)) # -> 1x1
pred = PF.affine(h, 10)
return pred
示例9: conv_unit
def conv_unit(x, scope, maps, k=4, s=2, p=1, act=F.relu, test=False):
with nn.parameter_scope(scope):
h = PF.convolution(x, maps, kernel=(k, k), stride=(s, s), pad=(p, p))
if act is None:
return h
h = PF.batch_normalization(h, batch_stat=not test)
h = act(h)
return h
示例10: test_graph_model
def test_graph_model(model, seed):
np.random.seed(313)
rng = np.random.RandomState(seed)
x = nn.Variable([2, 3, 4, 4], need_grad=True)
t = nn.Variable([2, 1])
x.d = rng.randn(*x.shape)
t.d = rng.randint(0, 5, size=t.shape)
nn.set_default_context(nn.Context())
# Forwardprop by definintion
nn.clear_parameters()
if model == "mlp":
with nn.parameter_scope('fc1'):
z = PF.affine(x, 3)
z2 = F.relu(z, inplace=True)
with nn.parameter_scope('fc2'):
z3 = PF.affine(z2, 5)
elif model == "recurrent":
with nn.parameter_scope('fc1'):
z = PF.affine(x, 3)
z2 = F.relu(z, inplace=True)
h = z2
for _ in range(2):
with nn.parameter_scope('fc2'):
h = PF.affine(h, 3)
h = F.relu(h, inplace=True)
with nn.parameter_scope('fc3'):
z3 = PF.affine(h, 5)
elif model == "convolution":
with nn.parameter_scope('conv1'):
z = PF.convolution(x, 3, (2, 2))
z2 = F.relu(z, inplace=True)
with nn.parameter_scope('fc2'):
z3 = PF.affine(z2, 5)
else:
raise ValueError()
l = F.softmax_cross_entropy(z3, t, 1)
L = F.mean(l)
# Forwardprop
L.forward(clear_no_need_grad=True)
# Backprop
# Diff should be initialized since they are always accumulated
x.grad.zero()
L.backward(clear_buffer=True)
x.g = rng.randn(*x.shape)
parameters = nn.get_parameters()
for param in parameters.values():
param.grad.zero()
inputs = [x] + list(parameters.values())
from nbla_test_utils import \
compute_analytical_and_numerical_grad_graph as grads
agrad, ngrad = grads(L, inputs, 1e-3)
assert np.allclose(ngrad, agrad, atol=1.05e-2)
示例11: conv_unit
def conv_unit(x, scope, maps, k=4, s=2, p=1, act=F.prelu, test=False):
with nn.parameter_scope(scope):
h = PF.convolution(x, maps, kernel=(k, k), stride=(s, s), pad=(p, p))
h = PF.batch_normalization(h, batch_stat=not test)
shape = h.shape
w = nn.Variable()
w.d = 0.3
h = act(h, w)
return h
示例12: res_block
def res_block(x, scope_name, act=F.relu, dn=False, test=False):
C = x.shape[1]
with nn.parameter_scope(scope_name):
# Conv -> BN -> Relu
with nn.parameter_scope("conv1"):
h = PF.convolution(x, C/2, kernel=(1, 1), pad=(0, 0), with_bias=False)
h = PF.batch_normalization(h, decay_rate=0.9, batch_stat=not test)
h = act(h)
# Conv -> BN -> Relu
with nn.parameter_scope("conv2"):
h = PF.convolution(h, C/2, kernel=(3, 3), pad=(1, 1), with_bias=False)
h = PF.batch_normalization(h, decay_rate=0.9, batch_stat=not test)
h = act(h)
# Conv -> BN
with nn.parameter_scope("conv3"):
h = PF.convolution(h, C, kernel=(1, 1), pad=(0, 0), with_bias=False)
h = PF.batch_normalization(h, decay_rate=0.9, batch_stat=not test)
return h
示例13: test_graph_clear_buffer
def test_graph_clear_buffer(seed):
np.random.seed(313)
rng = np.random.RandomState(seed)
x = nn.Variable([2, 3, 4, 4])
t = nn.Variable([2, 1])
x.d = rng.randn(*x.shape)
t.d = rng.randint(0, 5, size=t.shape)
# Network definition
nn.set_default_context(nn.Context())
nn.clear_parameters()
x1 = x + 1
x2 = x1 - 1
with nn.parameter_scope('conv1'):
z = PF.convolution(x2, 3, (2, 2))
z2 = F.relu(z, inplace=True)
with nn.parameter_scope('fc2'):
z3 = PF.affine(z2, 5)
l = F.softmax_cross_entropy(z3, t, 1)
L = F.mean(l)
# Forwardprop
import tempfile
import os
tmpd = tempfile.mkdtemp()
nn.save_parameters(os.path.join(tmpd, 'parameter.h5'))
first = False
for cnng in [False, True]:
for cb in [False, True]:
_ = nn.load_parameters(os.path.join(tmpd, 'parameter.h5'))
for v in nn.get_parameters().values():
v.grad.zero()
L.forward(clear_no_need_grad=cnng)
L.backward(clear_buffer=cb)
if not first:
first = True
g = list(nn.get_parameters().values())[0].g.copy()
else:
g2 = list(nn.get_parameters().values())[0].g.copy()
assert np.all(g == g2)
示例14: generator
def generator(z, maxh=256, test=False, output_hidden=False):
"""
Building generator network which takes (B, Z, 1, 1) inputs and generates
(B, 1, 28, 28) outputs.
"""
# Define shortcut functions
def bn(x):
# Batch normalization
return PF.batch_normalization(x, batch_stat=not test)
def upsample2(x, c):
# Twise upsampling with deconvolution.
return PF.deconvolution(x, c, kernel=(4, 4), pad=(1, 1), stride=(2, 2), with_bias=False)
assert maxh / 4 > 0
with nn.parameter_scope("gen"):
# (Z, 1, 1) --> (256, 4, 4)
with nn.parameter_scope("deconv1"):
d1 = F.elu(bn(PF.deconvolution(z, maxh, (4, 4), with_bias=False)))
# (256, 4, 4) --> (128, 8, 8)
with nn.parameter_scope("deconv2"):
d2 = F.elu(bn(upsample2(d1, maxh / 2)))
# (128, 8, 8) --> (64, 16, 16)
with nn.parameter_scope("deconv3"):
d3 = F.elu(bn(upsample2(d2, maxh / 4)))
# (64, 16, 16) --> (32, 28, 28)
with nn.parameter_scope("deconv4"):
# Convolution with kernel=4, pad=3 and stride=2 transforms a 28 x 28 map
# to a 16 x 16 map. Deconvolution with those parameters behaves like an
# inverse operation, i.e. maps 16 x 16 to 28 x 28.
d4 = F.elu(bn(PF.deconvolution(
d3, maxh / 8, (4, 4), pad=(3, 3), stride=(2, 2), with_bias=False)))
# (32, 28, 28) --> (1, 28, 28)
with nn.parameter_scope("conv5"):
x = F.tanh(PF.convolution(d4, 1, (3, 3), pad=(1, 1)))
if output_hidden:
return x, [d1, d2, d3, d4]
return x
示例15: mnist_resnet_prediction
def mnist_resnet_prediction(image, test=False):
"""
Construct ResNet for MNIST.
"""
image /= 255.0
def bn(x):
return PF.batch_normalization(x, batch_stat=not test)
def res_unit(x, scope):
C = x.shape[1]
with nn.parameter_scope(scope):
with nn.parameter_scope('conv1'):
h = F.elu(bn(PF.convolution(x, C / 2, (1, 1), with_bias=False)))
with nn.parameter_scope('conv2'):
h = F.elu(
bn(PF.convolution(h, C / 2, (3, 3), pad=(1, 1), with_bias=False)))
with nn.parameter_scope('conv3'):
h = bn(PF.convolution(h, C, (1, 1), with_bias=False))
return F.elu(F.add2(h, x, inplace=True))
# Conv1 --> 64 x 32 x 32
with nn.parameter_scope("conv1"):
c1 = F.elu(
bn(PF.convolution(image, 64, (3, 3), pad=(3, 3), with_bias=False)))
# Conv2 --> 64 x 16 x 16
c2 = F.max_pooling(res_unit(c1, "conv2"), (2, 2))
# Conv3 --> 64 x 8 x 8
c3 = F.max_pooling(res_unit(c2, "conv3"), (2, 2))
# Conv4 --> 64 x 8 x 8
c4 = res_unit(c3, "conv4")
# Conv5 --> 64 x 4 x 4
c5 = F.max_pooling(res_unit(c4, "conv5"), (2, 2))
# Conv5 --> 64 x 4 x 4
c6 = res_unit(c5, "conv6")
pl = F.average_pooling(c6, (4, 4))
with nn.parameter_scope("classifier"):
y = PF.affine(pl, 10)
return y