当前位置: 首页>>代码示例>>Python>>正文


Python functions.pow_scalar函数代码示例

本文整理汇总了Python中nnabla.functions.pow_scalar函数的典型用法代码示例。如果您正苦于以下问题:Python pow_scalar函数的具体用法?Python pow_scalar怎么用?Python pow_scalar使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了pow_scalar函数的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: sigmas_regularization

def sigmas_regularization(ctx, log_var0, log_var1):
    with nn.context_scope(ctx):
        h0 = F.exp(log_var0)
        h0 = F.pow_scalar(h0, 0.5)
        h1 = F.exp(log_var1)
        h1 = F.pow_scalar(h1, 0.5)
        r = F.mean(F.squared_error(h0, h1))
    return r
开发者ID:kzky,项目名称:works,代码行数:8,代码来源:cnn_model_060.py

示例2: sr_loss_with_uncertainty

def sr_loss_with_uncertainty(ctx, pred0, pred1, log_var0, log_var1):
    var0 = F.exp(log_var0)
    var1 = F.exp(log_var1)
    s0 = F.pow_scalar(var0, 0.5)
    s1 = F.pow_scalar(var0, 0.5)
    squared_error = F.squared_error(pred0, pred1)
    with nn.context_scope(ctx):
        loss = F.log(s1/s0) + (var0/var1 + squared_error/var1) * 0.5
        loss_sr = F.mean(loss)
    return loss_sr
开发者ID:kzky,项目名称:works,代码行数:10,代码来源:cnn_model_079.py

示例3: ce_loss_with_uncertainty

def ce_loss_with_uncertainty(ctx, pred, y_l, log_var):
    r = F.randn(0., 1., log_var.shape)
    r = F.pow_scalar(F.exp(log_var), 0.5) * r
    h = pred + r
    with nn.context_scope(ctx):
        loss_ce = F.mean(F.softmax_cross_entropy(h, y_l))
    return loss_ce
开发者ID:kzky,项目名称:works,代码行数:7,代码来源:cnn_model_060.py

示例4: sigma_regularization

def sigma_regularization(ctx, log_var, one):
    with nn.context_scope(ctx):
        h = F.exp(log_var)
        h = F.pow_scalar(h, 0.5)
        b = log_var.shape[0]
        r = F.sum(F.squared_error(h, one)) / b
    return r
开发者ID:kzky,项目名称:works,代码行数:7,代码来源:cnn_model_040.py

示例5: kl_divergence

def kl_divergence(ctx, pred, label, log_var):
    with nn.context_scope(ctx):
        s = F.pow_scalar(F.exp(log_var), 0.5)
        elms = softmax_with_temperature(ctx, label, s) \
               * F.log(F.softmax(pred, axis=1))
        loss = -F.mean(F.sum(elms, axis=1))
    return loss
开发者ID:kzky,项目名称:works,代码行数:7,代码来源:cnn_model_063.py

示例6: sigma_regularization

def sigma_regularization(ctx, log_var, one):
    with nn.context_scope(ctx):
        h = F.exp(log_var)
        h = F.pow_scalar(h, 0.5)
        h = F.mean(h, axis=1)
        r = F.mean(F.squared_error(h, one))
    return r
开发者ID:kzky,项目名称:works,代码行数:7,代码来源:cnn_model_042.py

示例7: __pow__

    def __pow__(self, other):
        """
        Element-wise power function.
        Implements the power operator expression ``A ** B``, together with :func:`~nnabla.variable.__rpow__` .
        When a scalar is specified for ``other``, this function performs an
        element-wise operation for all elements in ``self``.

        Args:
            other (float or ~nnabla.Variable): Internally calling
                :func:`~nnabla.functions.pow2` or
                :func:`~nnabla.functions.pow_scalar` according to the
                type.

        Returns: :class:`nnabla.Variable`

        """
        import nnabla.functions as F
        if isinstance(other, Variable):
            return F.pow2(self, other)
        return F.pow_scalar(self, other)
开发者ID:zwsong,项目名称:nnabla,代码行数:20,代码来源:variable.py

示例8: sigma_regularization

def sigma_regularization(ctx, log_var, one):
    with nn.context_scope(ctx):
        h = F.exp(log_var)
        h = F.pow_scalar(h, 0.5)
        r = F.mean(F.abs(h - one))
    return r
开发者ID:kzky,项目名称:works,代码行数:6,代码来源:cnn_model_037.py


注:本文中的nnabla.functions.pow_scalar函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。