当前位置: 首页>>代码示例>>Python>>正文


Python DependencyGraph.nodes[-1]方法代码示例

本文整理汇总了Python中nltk.parse.dependencygraph.DependencyGraph.nodes[-1]方法的典型用法代码示例。如果您正苦于以下问题:Python DependencyGraph.nodes[-1]方法的具体用法?Python DependencyGraph.nodes[-1]怎么用?Python DependencyGraph.nodes[-1]使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nltk.parse.dependencygraph.DependencyGraph的用法示例。


在下文中一共展示了DependencyGraph.nodes[-1]方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: as_dependencygraph

# 需要导入模块: from nltk.parse.dependencygraph import DependencyGraph [as 别名]
# 或者: from nltk.parse.dependencygraph.DependencyGraph import nodes[-1] [as 别名]
    def as_dependencygraph( self, keep_dummy_root=False, add_morph=True ):
        ''' Returns this tree as NLTK's DependencyGraph object.
            
            Note that this method constructs 'zero_based' graph,
            where counting of the words starts from 0 and the 
            root index is -1 (not 0, as in Malt-TAB format);
            
            Parameters
            -----------
            add_morph : bool
                Specifies whether the morphological information 
                (information about word lemmas, part-of-speech, and 
                features) should be added to graph nodes.
                Note that even if **add_morph==True**, morphological
                information is only added if it is available via
                estnltk's layer  token['analysis'];
                Default: True
            keep_dummy_root : bool
                Specifies whether the graph should include a dummy
                TOP / ROOT node, which does not refer to any word,
                and yet is the topmost node of the tree.
                If the dummy root node is not used, then the root 
                node is the word node headed by -1;
                Default: False
            
            For more information about NLTK's DependencyGraph, see:
             http://www.nltk.org/_modules/nltk/parse/dependencygraph.html
        '''
        from nltk.parse.dependencygraph import DependencyGraph
        graph = DependencyGraph( zero_based = True )
        all_tree_nodes = [self] + self.get_children()
        #
        # 0) Fix the root
        #
        if keep_dummy_root:
            #  Note: we have to re-construct  the root node manually, 
            #  as DependencyGraph's current interface seems to provide
            #  no easy/convenient means for fixing the root node;
            graph.nodes[-1] = graph.nodes[0]
            graph.nodes[-1].update( { 'address': -1 } )
            graph.root = graph.nodes[-1]
        del graph.nodes[0]
        #
        # 1) Update / Add nodes of the graph 
        #
        for child in all_tree_nodes:
            rel  = 'xxx' if not child.labels else '|'.join(child.labels)
            address = child.word_id
            word    = child.text
            graph.nodes[address].update(
            {
                'address': address,
                'word':  child.text,
                'rel':   rel,
            } )
            if not keep_dummy_root and child == self:
                # If we do not keep the dummy root node, set this tree
                # as the root node
                graph.root = graph.nodes[address]
            if add_morph and child.morph:
                # Add morphological information, if possible
                lemmas  = set([analysis[LEMMA] for analysis in child.morph])
                postags = set([analysis[POSTAG] for analysis in child.morph])
                feats   = set([analysis[FORM] for analysis in child.morph])
                lemma  = ('|'.join( list(lemmas)  )).replace(' ','_')
                postag = ('|'.join( list(postags) )).replace(' ','_')
                feats  = ('|'.join( list(feats) )).replace(' ','_')
                graph.nodes[address].update(
                {
                    'tag  ': postag,
                    'ctag' : postag,
                    'feats': feats,
                    'lemma': lemma
                } )

        #
        # 2) Update / Add arcs of the graph 
        #
        for child in all_tree_nodes:
            #  Connect children of given word
            deps = [] if not child.children else [c.word_id for c in child.children]
            head_address = child.word_id
            for dep in deps:
                graph.add_arc( head_address, dep )
            if child.parent == None and keep_dummy_root:
                graph.add_arc( -1, head_address )
            #  Connect the parent of given node
            head = -1 if not child.parent else child.parent.word_id
            graph.nodes[head_address].update(
            {
                'head':  head,
            } )
        return graph
开发者ID:estnltk,项目名称:estnltk,代码行数:95,代码来源:utils.py


注:本文中的nltk.parse.dependencygraph.DependencyGraph.nodes[-1]方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。