当前位置: 首页>>代码示例>>Python>>正文


Python BigramCollocationFinder.from_words方法代码示例

本文整理汇总了Python中nltk.collocations.BigramCollocationFinder.from_words方法的典型用法代码示例。如果您正苦于以下问题:Python BigramCollocationFinder.from_words方法的具体用法?Python BigramCollocationFinder.from_words怎么用?Python BigramCollocationFinder.from_words使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nltk.collocations.BigramCollocationFinder的用法示例。


在下文中一共展示了BigramCollocationFinder.from_words方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_word_bigram_scores

# 需要导入模块: from nltk.collocations import BigramCollocationFinder [as 别名]
# 或者: from nltk.collocations.BigramCollocationFinder import from_words [as 别名]
def create_word_bigram_scores():
    posdata = tp.seg_fil_senti_excel("~", 1, 1)
    negdata = tp.seg_fil_senti_excel("~", 1, 1)
    
    posWords = list(itertools.chain(*posdata))
    negWords = list(itertools.chain(*negdata))

    bigram_finder = BigramCollocationFinder.from_words(posWords)
    bigram_finder = BigramCollocationFinder.from_words(negWords)
    posBigrams = bigram_finder.nbest(BigramAssocMeasures.chi_sq, 5000)
    negBigrams = bigram_finder.nbest(BigramAssocMeasures.chi_sq, 5000)

    pos = posWords + posBigrams
    neg = negWords + negBigrams

    word_fd = FreqDist()
    last_word = ConditionalFreqDist()
    for word in pos:
        word_fd.inc(word)
        last_word['pos'].inc(word)
    for word in neg:
        word_fd.inc(word)
        last_word['neg'].inc(word)

    pos_word_count = last_word['pos'].N()
    neg_word_count = last_word['neg'].N()
    totalnumber = pos_word_count + neg_word_count

    word_scores = {}
    for word, freq in word_fd.iteritems():
        pos_score = BigramAssocMeasures.chi_sq(last_word['pos'][word], (freq, pos_word_count), totalnumber)
        neg_score = BigramAssocMeasures.chi_sq(last_word['neg'][word], (freq, neg_word_count), totalnumber)
        word_scores[word] = pos_score + neg_score

    return word_scores
开发者ID:TianyiM,项目名称:Final-Project,代码行数:37,代码来源:score.py

示例2: create_word_bigram_scores

# 需要导入模块: from nltk.collocations import BigramCollocationFinder [as 别名]
# 或者: from nltk.collocations.BigramCollocationFinder import from_words [as 别名]
def create_word_bigram_scores():
    posdata = tp.seg_fil_txt("/home/hadoop/goodnew.txt")
    negdata = tp.seg_fil_txt("/home/hadoop/badnew.txt")
    
    posWords = list(itertools.chain(*posdata))
    negWords = list(itertools.chain(*negdata))

    bigram_finderr = BigramCollocationFinder.from_words(posWords)
    bigram_finder = BigramCollocationFinder.from_words(negWords)
    posBigrams = bigram_finderr.nbest(BigramAssocMeasures.chi_sq,350000)
    negBigrams = bigram_finder.nbest(BigramAssocMeasures.chi_sq,350000)

    pos = posWords + posBigrams
    neg = negWords + negBigrams

    word_fd = FreqDist()
    cond_word_fd = ConditionalFreqDist()
    for word in pos:
        word_fd.inc(word)
        cond_word_fd['pos'].inc(word)
    for word in neg:
        word_fd.inc(word)
        cond_word_fd['neg'].inc(word)

    pos_word_count = cond_word_fd['pos'].N()
    neg_word_count = cond_word_fd['neg'].N()
    total_word_count = pos_word_count + neg_word_count

    word_scores = {}
    for word, freq in word_fd.iteritems():
        pos_score = BigramAssocMeasures.chi_sq(cond_word_fd['pos'][word], (freq, pos_word_count), total_word_count)
        neg_score = BigramAssocMeasures.chi_sq(cond_word_fd['neg'][word], (freq, neg_word_count), total_word_count)
        word_scores[word] = pos_score + neg_score

    return word_scores
开发者ID:lihui19891118,项目名称:Sentimental-analysis,代码行数:37,代码来源:store+sentiment+classifier.py

示例3: create_words_bigrams_scores

# 需要导入模块: from nltk.collocations import BigramCollocationFinder [as 别名]
# 或者: from nltk.collocations.BigramCollocationFinder import from_words [as 别名]
def create_words_bigrams_scores():
    posdata = tp.seg_fil_senti_excel("./Machine-learning-features/seniment review set/pos_review.xlsx", 1, 1)
    negdata = tp.seg_fil_senti_excel("./Machine-learning-features/seniment review set/neg_review.xlsx", 1, 1)
    
    posWords = list(itertools.chain(*posdata))
    negWords = list(itertools.chain(*negdata))

    bigram_finder = BigramCollocationFinder.from_words(posWords)
    bigram_finder = BigramCollocationFinder.from_words(negWords)
    posBigrams = bigram_finder.nbest(BigramAssocMeasures.chi_sq, 5000)
    negBigrams = bigram_finder.nbest(BigramAssocMeasures.chi_sq, 5000)

    pos = posWords + posBigrams
    neg = negWords + negBigrams

    word_fd = FreqDist()
    cond_word_fd = ConditionalFreqDist()
    for word in pos:
        word_fd[word]+=1
        cond_word_fd['pos'][word]+=1

    for word in neg:
        word_fd[word]+=1
        cond_word_fd['neg'][word]+=1
    pos_word_count = cond_word_fd['pos'].N()
    neg_word_count = cond_word_fd['neg'].N()
    total_word_count = pos_word_count + neg_word_count

    word_scores = {}
    for word, freq in word_fd.iteritems():
        pos_score = BigramAssocMeasures.chi_sq(cond_word_fd['pos'][word], (freq, pos_word_count), total_word_count)
        neg_score = BigramAssocMeasures.chi_sq(cond_word_fd['neg'][word], (freq, neg_word_count), total_word_count)
        word_scores[word] = pos_score + neg_score

    return word_scores
开发者ID:wac81,项目名称:LSI-for-ChineseDocument,代码行数:37,代码来源:pos_neg_ml_feature.py

示例4: create_word_bigram_scores

# 需要导入模块: from nltk.collocations import BigramCollocationFinder [as 别名]
# 或者: from nltk.collocations.BigramCollocationFinder import from_words [as 别名]
def create_word_bigram_scores(posWords, negWords, n = 5000):
    # (posWords,negWords) = readwordarr()
    posWords = list(itertools.chain(*posWords))
    negWords = list(itertools.chain(*negWords))
    bigramfinder = BigramCollocationFinder.from_words(posWords)
    posbigrams = bigramfinder.nbest(BigramAssocMeasures.chi_sq, n)
    bigramfinder = BigramCollocationFinder.from_words(negWords)
    negbigrams = bigramfinder.nbest(BigramAssocMeasures.chi_sq, n)
    posWords = posWords + posbigrams
    negWords = negWords + negbigrams
    wordscores = {}
    wordfd = FreqDist()
    conditionwordfd = ConditionalFreqDist()
    for word in posWords:
        wordfd[word]+=1
        conditionwordfd['pos'][word]+=1
        
    for word in negWords:
        wordfd[word]+=1
        conditionwordfd['neg'][word]+=1
    
    pos_word_count = conditionwordfd['pos'].N()
    neg_word_count = conditionwordfd['neg'].N()
    totalcount = pos_word_count + neg_word_count
    for word,freq in wordfd.items():
        pos_score = BigramAssocMeasures.chi_sq(conditionwordfd['pos'][word], (freq, pos_word_count), totalcount)
        neg_score = BigramAssocMeasures.chi_sq(conditionwordfd['neg'][word], (freq, neg_word_count), totalcount)
        wordscores[word] = pos_score + neg_score
    return wordscores
开发者ID:eleanordong,项目名称:datamining,代码行数:31,代码来源:sentimentexample.py

示例5: create_bigram_scores

# 需要导入模块: from nltk.collocations import BigramCollocationFinder [as 别名]
# 或者: from nltk.collocations.BigramCollocationFinder import from_words [as 别名]
def create_bigram_scores():
    posdata = tp.seg_fil_senti_excel("D:/code/sentiment_test/pos_review.xlsx", "1", "1")
    negdata = tp.seg_fil_senti_excel("D:/code/sentiment_test/neg_review.xlsx", "1", "1")
    
    posWords = list(itertools.chain(*posdata))
    negWords = list(itertools.chain(*negdata))

    bigram_finder = BigramCollocationFinder.from_words(posWords)
    bigram_finder = BigramCollocationFinder.from_words(negWords)
    posBigrams = bigram_finder.nbest(BigramAssocMeasures.chi_sq, 8000)
    negBigrams = bigram_finder.nbest(BigramAssocMeasures.chi_sq, 8000)

    pos = posBigrams
    neg = negBigrams

    word_fd = FreqDist()
    cond_word_fd = ConditionalFreqDist()
    for word in pos:
        word_fd.inc(word)
        cond_word_fd['pos'].inc(word)
    for word in neg:
        word_fd.inc(word)
        cond_word_fd['neg'].inc(word)

    pos_word_count = cond_word_fd['pos'].N()
    neg_word_count = cond_word_fd['neg'].N()
    total_word_count = pos_word_count + neg_word_count

    word_scores = {}
    for word, freq in word_fd.iteritems():
        pos_score = BigramAssocMeasures.chi_sq(cond_word_fd['pos'][word], (freq, pos_word_count), total_word_count)
        neg_score = BigramAssocMeasures.chi_sq(cond_word_fd['neg'][word], (freq, neg_word_count), total_word_count)
        word_scores[word] = pos_score + neg_score

    return word_scores
开发者ID:EricChanBD,项目名称:Review-Helpfulness-Prediction,代码行数:37,代码来源:store+sentiment+classifier.py

示例6: create_word_bigram_scores

# 需要导入模块: from nltk.collocations import BigramCollocationFinder [as 别名]
# 或者: from nltk.collocations.BigramCollocationFinder import from_words [as 别名]
def create_word_bigram_scores():
    posdata = pickle.load(open('/Users/genghaiyang/ghy_works/projects/weibo_crawler/textmining/sentiML/pos_neg_review/pos_review.pkl','r'))
    negdata = pickle.load(open('/Users/genghaiyang/ghy_works/projects/weibo_crawler/textmining/sentiML/pos_neg_review/neg_review.pkl','r'))
    
    posWords = list(itertools.chain(*posdata))
    negWords = list(itertools.chain(*negdata))

    bigram_finder = BigramCollocationFinder.from_words(posWords)
    bigram_finder = BigramCollocationFinder.from_words(negWords)
    posBigrams = bigram_finder.nbest(BigramAssocMeasures.chi_sq, 5000)
    negBigrams = bigram_finder.nbest(BigramAssocMeasures.chi_sq, 5000)

    pos = posWords + posBigrams #词和双词搭配
    neg = negWords + negBigrams

    word_fd = FreqDist()
    cond_word_fd = ConditionalFreqDist()
    for word in pos:
        word_fd[word] += 1#word_fd.inc(word)
        cond_word_fd['pos'][word]+= 1 #cond_word_fd['pos'].inc(word)
    for word in neg:
        word_fd[word] += 1#word_fd.inc(word)
        cond_word_fd['neg'][word]+= 1#cond_word_fd['neg'].inc(word)

    pos_word_count = cond_word_fd['pos'].N()
    neg_word_count = cond_word_fd['neg'].N()
    total_word_count = pos_word_count + neg_word_count

    word_scores = {}
    for word, freq in word_fd.iteritems():
        pos_score = BigramAssocMeasures.chi_sq(cond_word_fd['pos'][word], (freq, pos_word_count), total_word_count)
        neg_score = BigramAssocMeasures.chi_sq(cond_word_fd['neg'][word], (freq, neg_word_count), total_word_count)
        word_scores[word] = pos_score + neg_score

    return word_scores
开发者ID:coolspiderghy,项目名称:sina_weibo_crawler,代码行数:37,代码来源:extractFeatures_org.py

示例7: create_word_bigram_scores

# 需要导入模块: from nltk.collocations import BigramCollocationFinder [as 别名]
# 或者: from nltk.collocations.BigramCollocationFinder import from_words [as 别名]
def create_word_bigram_scores(posWords, negWords):
    bigram_finder = BigramCollocationFinder.from_words(posWords)
    bigram_finder = BigramCollocationFinder.from_words(negWords)
    posBigrams = bigram_finder.nbest(BigramAssocMeasures.chi_sq, 2000)
    negBigrams = bigram_finder.nbest(BigramAssocMeasures.chi_sq, 2000)

    pos = posWords + posBigrams #词和双词搭配
    neg = negWords + negBigrams

    word_fd = FreqDist()
    cond_word_fd = ConditionalFreqDist()
    for word in pos:
        word_fd[str(word)] += 1 
        cond_word_fd['pos'][str(word)] += 1
    for word in neg:
	    word_fd[str(word)] += 1
	    cond_word_fd['neg'][str(word)] += 1

    pos_word_count = cond_word_fd['pos'].N()
    neg_word_count = cond_word_fd['neg'].N()
    total_word_count = pos_word_count + neg_word_count

    word_scores = {}
    for word, freq in word_fd.iteritems():
        pos_score = BigramAssocMeasures.chi_sq(cond_word_fd['pos'][word], (freq, pos_word_count), total_word_count)
        neg_score = BigramAssocMeasures.chi_sq(cond_word_fd['neg'][word], (freq, neg_word_count), total_word_count)
        word_scores[word] = pos_score + neg_score

    return word_scores
开发者ID:delili,项目名称:NLP_Comments_Sentiment_Analysis,代码行数:31,代码来源:process.py

示例8: best_bigrams

# 需要导入模块: from nltk.collocations import BigramCollocationFinder [as 别名]
# 或者: from nltk.collocations.BigramCollocationFinder import from_words [as 别名]
def best_bigrams(sents_tagged, stopwords, score_fn=BigramAssocMeasures.likelihood_ratio, n=300):
    sents_pos = []
    sents_neg = []

    # Separate positive and negative sentences.
    for tag, sent in sents_tagged:
        if tag == 1:
            sents_pos.append(sent)
        elif tag == -1:
            sents_neg.append(sent)

    # Extract words from positive and negative sentences.
    words_pos = [word.lower() for s in sents_pos for word in word_tokenize(s) if word not in string.punctuation]
    words_neg = [word.lower() for s in sents_neg for word in word_tokenize(s) if word not in string.punctuation]

    # Find the best bigrams for positive sentences based on informative collocations
    bigram_finder1 = BigramCollocationFinder.from_words(words_pos)
    bigrams_best_pos = bigram_finder1.nbest(score_fn, n)

    # Find the best bigrams for negative sentences based on informative collocations
    bigram_finder2 = BigramCollocationFinder.from_words(words_neg)
    bigrams_best_neg = bigram_finder2.nbest(score_fn, n)

    bigrams_all = list(set(bigrams_best_pos).union(set(bigrams_best_neg)))

    # Select only the bigrams that have either one of the word greater than length 3
    bigrams_best = [bigram for bigram in bigrams_all
            if len(bigram[0]) > 3 and len(bigram[1]) > 3
            and bigram[0] not in ex and bigram[1] not in ex ]


    return bigrams_best
开发者ID:AJRenold,项目名称:classification_assignment_i256,代码行数:34,代码来源:Bigrams_Features.py

示例9: _get_bigram_scores

# 需要导入模块: from nltk.collocations import BigramCollocationFinder [as 别名]
# 或者: from nltk.collocations.BigramCollocationFinder import from_words [as 别名]
    def _get_bigram_scores(self, posdata, negdata):
        pos_words = list(itertools.chain(*posdata))
        neg_words = list(itertools.chain(*negdata))

        pos_bigram_finder = BigramCollocationFinder.from_words(pos_words)
        neg_bigram_finder = BigramCollocationFinder.from_words(neg_words)
        pos_bigrams = pos_bigram_finder.nbest(BigramAssocMeasures.chi_sq, 5000)
        neg_bigrams = neg_bigram_finder.nbest(BigramAssocMeasures.chi_sq, 5000)

        pos = pos_words + pos_bigrams
        neg = neg_words + neg_bigrams

        word_fd = FreqDist()
        cond_word_fd = ConditionalFreqDist()
        for word in pos:
            word_fd[word] += 1
            cond_word_fd['pos'][word] += 1
        for word in neg:
            word_fd[word] += 1
            cond_word_fd['neg'][word] += 1

        pos_word_count = cond_word_fd['pos'].N()
        neg_word_count = cond_word_fd['neg'].N()
        total_word_count = pos_word_count + neg_word_count

        word_scores = {}
        for word, freq in word_fd.iteritems():
            pos_score = BigramAssocMeasures.chi_sq(cond_word_fd['pos'][word], (freq, pos_word_count), total_word_count)
            neg_score = BigramAssocMeasures.chi_sq(cond_word_fd['neg'][word], (freq, neg_word_count), total_word_count)
            word_scores[word] = pos_score + neg_score

        return word_scores
开发者ID:Palazor,项目名称:sentiment,代码行数:34,代码来源:Extractor.py

示例10: create_word_bigram_scores

# 需要导入模块: from nltk.collocations import BigramCollocationFinder [as 别名]
# 或者: from nltk.collocations.BigramCollocationFinder import from_words [as 别名]
def create_word_bigram_scores(posWords, negWords, score_method = BigramAssocMeasures.chi_sq):
    '''
    以双词来统计词的信息量
    '''
    bigram_finder = BigramCollocationFinder.from_words(posWords)
    posBigrams = bigram_finder.nbest(score_method, 5000)
    bigram_finder = BigramCollocationFinder.from_words(negWords)
    negBigrams = bigram_finder.nbest(score_method, 5000)
    pos = posWords + posBigrams #词和双词搭配
    neg = negWords + negBigrams

    word_fd = FreqDist()
    cond_word_fd = ConditionalFreqDist()
    for word in pos:
        word_fd[word] += 1
        cond_word_fd['pos'][word] += 1
    for word in neg:
        word_fd[word] += 1
        cond_word_fd['neg'][word] += 1
    pos_word_count = cond_word_fd['pos'].N()
    neg_word_count = cond_word_fd['neg'].N()
    total_word_count = pos_word_count + neg_word_count
    print("BIGRAM_IN_POSWORD_NUMS : %d\tBIGRAM_IN_NEGWORD_NUMS : %d" % (pos_word_count, neg_word_count))

    word_scores = {}
    for word, freq in word_fd.iteritems():
        pos_score = score_method(cond_word_fd['pos'][word], (freq, pos_word_count), total_word_count)
        neg_score = score_method(cond_word_fd['neg'][word], (freq, neg_word_count), total_word_count)
        word_scores[word] = pos_score + neg_score
    return word_scores
开发者ID:JoshuaMichaelKing,项目名称:Stock-SentimentAnalysis,代码行数:32,代码来源:classifiers_score.py

示例11: create_word_bigram_scores

# 需要导入模块: from nltk.collocations import BigramCollocationFinder [as 别名]
# 或者: from nltk.collocations.BigramCollocationFinder import from_words [as 别名]
def create_word_bigram_scores():
	bigram_finder = BigramCollocationFinder.from_words(posWords)
	bigram_finder = BigramCollocationFinder.from_words(negWords)
	posBigrams = bigram_finder.nbest(BigramAssocMeasures.chi_sq, 5000)
	negBigrams = bigram_finder.nbest(BigramAssocMeasures.chi_sq, 5000)
	pos = posWords + posBigrams #词和双词搭配
	neg = negWords + negBigrams
	return get_scores(pos, neg)
开发者ID:yyr93520,项目名称:NLPproject,代码行数:10,代码来源:feature_extrac.py

示例12: create_word_bigram_scores

# 需要导入模块: from nltk.collocations import BigramCollocationFinder [as 别名]
# 或者: from nltk.collocations.BigramCollocationFinder import from_words [as 别名]
def create_word_bigram_scores():
    posWords = list(itertools.chain(*posdata))
    negWords = list(itertools.chain(*negdata))
    
    objWords = list(itertools.chain(*objdata))

    bigram_finder = BigramCollocationFinder.from_words(posWords)
    bigram_finder = BigramCollocationFinder.from_words(negWords)
    
    bigram_finder = BigramCollocationFinder.from_words(objWords)
    posBigrams = bigram_finder.nbest(BigramAssocMeasures.chi_sq, 5000)
    negBigrams = bigram_finder.nbest(BigramAssocMeasures.chi_sq, 5000)
    
    objBigrams = bigram_finder.nbest(BigramAssocMeasures.chi_sq, 5000)


    pos = posWords + posBigrams
    neg = negWords + negBigrams
    
    obj = objWords + objBigrams

    word_fd = FreqDist()
    cond_word_fd = ConditionalFreqDist()
    for word in pos:
        word_fd[word] += 1
        cond_word_fd['pos'][word] += 1
    for word in neg:
        word_fd[word] += 1
        cond_word_fd['neg'][word] += 1
    for word in objWords:
        word_fd[word] += 1
        cond_word_fd['obj'][word] += 1

    pos_word_count = cond_word_fd['pos'].N()
    neg_word_count = cond_word_fd['neg'].N()
    
    obj_word_count = cond_word_fd['obj'].N()
    total_word_count = pos_word_count + neg_word_count + obj_word_count

    word_scores = {}
    for word, freq in word_fd.iteritems():
        pos_score = BigramAssocMeasures.chi_sq(cond_word_fd['pos'][word], (freq, pos_word_count), total_word_count)
        neg_score = BigramAssocMeasures.chi_sq(cond_word_fd['neg'][word], (freq, neg_word_count), total_word_count)
       
        obj_score = BigramAssocMeasures.chi_sq(cond_word_fd['obj'][word], (freq, obj_word_count), total_word_count)
        word_scores[word] = pos_score + neg_score + obj_score

    return word_scores
开发者ID:Irradiatepy,项目名称:weibo_sentiment_analysis,代码行数:50,代码来源:weibo_sentiment_classifier.py

示例13: collocations

# 需要导入模块: from nltk.collocations import BigramCollocationFinder [as 别名]
# 或者: from nltk.collocations.BigramCollocationFinder import from_words [as 别名]
    def collocations(self, num=20, window_size=2):
        """
        Print collocations derived from the text, ignoring stopwords.

        :seealso: find_collocations
        :param num: The maximum number of collocations to print.
        :type num: int
        :param window_size: The number of tokens spanned by a collocation (default=2)
        :type window_size: int
        """
        if not (
            '_collocations' in self.__dict__
            and self._num == num
            and self._window_size == window_size
        ):
            self._num = num
            self._window_size = window_size

            # print("Building collocations list")
            from nltk.corpus import stopwords

            ignored_words = stopwords.words('english')
            finder = BigramCollocationFinder.from_words(self.tokens, window_size)
            finder.apply_freq_filter(2)
            finder.apply_word_filter(lambda w: len(w) < 3 or w.lower() in ignored_words)
            bigram_measures = BigramAssocMeasures()
            self._collocations = finder.nbest(bigram_measures.likelihood_ratio, num)
        colloc_strings = [w1 + ' ' + w2 for w1, w2 in self._collocations]
        print(tokenwrap(colloc_strings, separator="; "))
开发者ID:prz3m,项目名称:kind2anki,代码行数:31,代码来源:text.py

示例14: get_bigrams1

# 需要导入模块: from nltk.collocations import BigramCollocationFinder [as 别名]
# 或者: from nltk.collocations.BigramCollocationFinder import from_words [as 别名]
def get_bigrams1(tweet, score_fn=BigramAssocMeasures.chi_sq, n=200):
        bigramslist = []
        bigram_finder = BigramCollocationFinder.from_words(tweet)
        bigrams = bigram_finder.nbest(score_fn, n)
        for bigram in bigrams:
            bigramslist.append(' '.join(str(i) for i in bigram))
        print bigramslist
开发者ID:svenka22,项目名称:Twitter-Sentiment-Analysis,代码行数:9,代码来源:Test.py

示例15: best_bigram_word_features

# 需要导入模块: from nltk.collocations import BigramCollocationFinder [as 别名]
# 或者: from nltk.collocations.BigramCollocationFinder import from_words [as 别名]
def best_bigram_word_features(words, score_fn=BigramAssocMeasures.chi_sq, n=200):
    bigram_finder = BigramCollocationFinder.from_words(words)
    bigrams = bigram_finder.nbest(score_fn, n)
    d = dict([(bigram, True) for bigram in bigrams])
    d.update(best_word_features(words))

    return d
开发者ID:seanfreiburg,项目名称:chicago_tweet_grabber,代码行数:9,代码来源:analyze_tweets.py


注:本文中的nltk.collocations.BigramCollocationFinder.from_words方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。