当前位置: 首页>>代码示例>>Python>>正文


Python MaxentClassifier.train方法代码示例

本文整理汇总了Python中nltk.classify.MaxentClassifier.train方法的典型用法代码示例。如果您正苦于以下问题:Python MaxentClassifier.train方法的具体用法?Python MaxentClassifier.train怎么用?Python MaxentClassifier.train使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nltk.classify.MaxentClassifier的用法示例。


在下文中一共展示了MaxentClassifier.train方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main_function

# 需要导入模块: from nltk.classify import MaxentClassifier [as 别名]
# 或者: from nltk.classify.MaxentClassifier import train [as 别名]
def main_function():
	conn = MySQLdb.connect(host=DATABASES['date_cutoff']['HOST'], 
			user=DATABASES['date_cutoff']['USER'], 
			passwd=DATABASES['date_cutoff']['PASSWORD'], 
			db=DATABASES['date_cutoff']['NAME'])

	training_tweets = classify.get_training_tweets(conn_analysis)
	training_feature_set = process_tweets(training_tweets)

	config_megam('/opt/packages')
	classifier = MaxentClassifier.train(training_feature_set, algorithm="megam", trace=0)

	error_dict = {'+':0, '-':0, 'I':0, 'O':0} 
	count_dict = {'+':0, '-':0, 'I':0, 'O':0} 
	guess_dict = {'+':0, '-':0, 'I':0, 'O':0} 

	full_matrix = {'+':{'+':0, '-':0, 'I':0, 'O':0}, 
				'-':{'+':0, '-':0, 'I':0, 'O':0}, 
				'I':{'+':0, '-':0, 'I':0, 'O':0}, 
				'O':{'+':0, '-':0, 'I':0, 'O':0}}


	test_tweets = classify.get_test_tweets(conn_analysis)
	test_feature_set = process_tweets(test_tweets)

	classifier.show_most_informative_features(10)
	classifier_accuracy = accuracy(classifier, test_feature_set)
	print "classifier accuracy: " + repr(classifier_accuracy)
开发者ID:7andrew7,项目名称:vaccine-sentiment,代码行数:30,代码来源:max-ent-bigrams.py

示例2: train

# 需要导入模块: from nltk.classify import MaxentClassifier [as 别名]
# 或者: from nltk.classify.MaxentClassifier import train [as 别名]
 def train(cls):
     train_set = cls.get_final_train_set()
     classifier = maxent.train(train_set, cls.MAXENT_ALGORITHM, trace=0, max_iter=1000)
     # save classifier
     f = open(cls.CLASSIFIER_FILE, 'wb')
     pickle.dump(classifier, f)
     f.close()
开发者ID:BitVoyage,项目名称:YelpReviewsProject,代码行数:9,代码来源:sentiment_classify.py

示例3: __maxent_train

# 需要导入模块: from nltk.classify import MaxentClassifier [as 别名]
# 或者: from nltk.classify.MaxentClassifier import train [as 别名]
 def __maxent_train(fs):
     return MaxentClassifier.train(fs, 
         algorithm=algorithm,
         gaussian_prior_sigma=gaussian_prior_sigma,
         count_cutoff=count_cutoff,
         min_lldelta=min_lldelta,
         trace=trace)
开发者ID:Sandy4321,项目名称:nltk_contrib,代码行数:9,代码来源:chunk.py

示例4: main_function

# 需要导入模块: from nltk.classify import MaxentClassifier [as 别名]
# 或者: from nltk.classify.MaxentClassifier import train [as 别名]
def main_function():
	conn = MySQLdb.connect(host=DATABASES['default']['HOST'], 
			user=DATABASES['default']['USER'], 
			passwd=DATABASES['default']['PASSWORD'], 
			db=DATABASES['default']['NAME'])

	training_tweets = classify.get_training_tweets(conn_analysis)
	training_feature_set = classify.process_tweets(training_tweets)

	config_megam('/opt/packages')
	classifier = MaxentClassifier.train(training_feature_set, algorithm="megam", trace=0)

	count_table = {'+':0, '-':0, 'I':0, 'O':0}  
	tweets = classify.get_tweets_to_classify(conn_analysis);

	for tweet in tweets:
		text = classify.get_tweet_text(conn_analysis, tweet[0])[0][0]
		guess = classifier.classify(classify.process_tweet(text))
		update_tweet_polarity(tweet[0], guess, conn_analysis)
		count_table[guess] += 1

	#For the tweets where polarity was determined manually, copy from 
	#majority_vote to auto_vote
	fix_manual_tweets(conn_analysis)

	print count_table
开发者ID:7andrew7,项目名称:vaccine-sentiment,代码行数:28,代码来源:full-dataset-max-ent.py

示例5: train

# 需要导入模块: from nltk.classify import MaxentClassifier [as 别名]
# 或者: from nltk.classify.MaxentClassifier import train [as 别名]
 def train(self, d):
     """
     Given a labeled set, train our classifier.
     """
     t = self.__tag_data_set(d)
     self.classifier = MaxentClassifier.train(t)
     logging.info("Training on %s records complete." % len(d))
开发者ID:agness,项目名称:recipe_nltk,代码行数:9,代码来源:nltk_classifier.py

示例6: _train

# 需要导入模块: from nltk.classify import MaxentClassifier [as 别名]
# 或者: from nltk.classify.MaxentClassifier import train [as 别名]
 def _train(self, algo='iis', trace=0, max_iter=10):
     '''
     Internal method to train and return a NLTK maxent classifier.
     ''' 
     data = [(p.text, p.quote) for p in train_query]
     train_set = [(get_features(n), g) for (n, g) in data]
     return MaxentClassifier.train(train_set, algorithm=algo, trace=trace, max_iter=max_iter)
开发者ID:bokas,项目名称:citizen-quotes,代码行数:9,代码来源:maxent.py

示例7: train

# 需要导入模块: from nltk.classify import MaxentClassifier [as 别名]
# 或者: from nltk.classify.MaxentClassifier import train [as 别名]
 def train(cls, aspect):
     print cls.get_features(aspect)
     print cls.get_classifier_name(aspect)
     train_set = cls.get_features(aspect)[:int(0.7*cls.LABELED_NUM)]
     classifier = maxent.train(train_set, 'IIS', trace=0, max_iter=1000)
     # save classifier
     f = open(cls.get_classifier_name(aspect), 'wb')
     pickle.dump(classifier, f)
     f.close()
开发者ID:BitVoyage,项目名称:YelpReviewsProject,代码行数:11,代码来源:static_aspects_extract.py

示例8: classify_maxent

# 需要导入模块: from nltk.classify import MaxentClassifier [as 别名]
# 或者: from nltk.classify.MaxentClassifier import train [as 别名]
def classify_maxent(X_train, Y_train, X_test):
    training_input = X_train
    training_output = Y_train
    training_data = []
    for i in range(len(training_input)):
        training_data.append((training_input[i], training_output[i]))
    clf = MaxentClassifier.train(training_data)
    pred_labels = clf.classify_many(X_test)
    return pred_labels
开发者ID:JoshuaW1990,项目名称:SentimentAnalysis,代码行数:11,代码来源:SentimentAnalysis.py

示例9: maxent_train

# 需要导入模块: from nltk.classify import MaxentClassifier [as 别名]
# 或者: from nltk.classify.MaxentClassifier import train [as 别名]
 def maxent_train (self):
 
     self.classifier_all = MaxentClassifier.train (self.maxent_memes_all, trace=100, max_iter=5)
     #classifier_bottom = MaxentClassifier.train (maxent_memes_bottom, trace=100, max_iter=250)
     #classifier_all = MaxentClassifier.train (maxent_memes_all, trace=100, max_iter=250)
     weights = self.classifier_all.weights()
     f = open ("lambdas.txt", "w")
     for weight in weights:
         f.write("weight = %f" % weight)
         f.write ("\n")
开发者ID:AlexeyMK,项目名称:DATASS,代码行数:12,代码来源:NgramsManager.py

示例10: main_function

# 需要导入模块: from nltk.classify import MaxentClassifier [as 别名]
# 或者: from nltk.classify.MaxentClassifier import train [as 别名]
def main_function():
	conn = MySQLdb.connect(host=DATABASES['default']['HOST'], 
			user=DATABASES['default']['USER'], 
			passwd=DATABASES['default']['PASSWORD'], 
			db=DATABASES['default']['NAME'])

	training_tweets = classify.get_training_tweets(conn)
	training_feature_set = classify.process_tweets(training_tweets)

	bayes_classifier = NaiveBayesClassifier.train(training_feature_set)

	count_table = {'+':0, '-':0, 'I':0, 'O':0}  

	test_tweets = classify.get_test_tweets(conn)

	for tweet in test_tweets:
		text = classify.get_tweet_text(conn, tweet[0])[0][0]
		guess = bayes_classifier.classify(classify.process_tweet(text))
		classify.update_tweet_polarity(tweet[0], guess, conn)
		count_table[guess] += 1

	print "Naive Bayes"
	print count_table

	count_table = {'+':0, '-':0, 'I':0, 'O':0}  
	config_megam('/opt/packages')
	max_ent_classifier = MaxentClassifier.train(training_feature_set, algorithm="megam", trace=0)

	for tweet in test_tweets:
		text = classify.get_tweet_text(conn, tweet[0])[0][0]
		guess = max_ent_classifier.classify(classify.process_tweet(text))
		update_tweet_polarity_ensemble(tweet[0], guess, conn)
		count_table[guess] += 1

	print "Maximum Entropy"
	print count_table

	#generate the accuracy matrix
	full_matrix = {'+':{'+':0, '-':0, 'I':0, 'O':0}, 
				'-':{'+':0, '-':0, 'I':0, 'O':0}, 
				'I':{'+':0, '-':0, 'I':0, 'O':0}, 
				'O':{'+':0, '-':0, 'I':0, 'O':0}}

	for tweet in test_tweets:
		result = classify.run_sql(conn, classify.Statements.CHECK_CONSENSUS % tweet[0])
		guess = result[0][0]

		actual_result = classify.run_sql(conn, classify.Statements.CHECK_MAJORITY % tweet[0])
		actual = actual_result[0][0]

		if guess is not None:
			if actual is not None:
				full_matrix[actual][guess] += 1

	print full_matrix
开发者ID:7andrew7,项目名称:vaccine-sentiment,代码行数:57,代码来源:a-ensemble-bayes-max-ent.py

示例11: run

# 需要导入模块: from nltk.classify import MaxentClassifier [as 别名]
# 或者: from nltk.classify.MaxentClassifier import train [as 别名]
def run(training):
    """
    To create and train a MaxentClassifier
    :return: a trained Classifier
    """
    print "Training ME Classifier..."
    # feats = label_feat_from_corps(movie_reviews)
    # training, testing = split_label_feats(feats)

    me_classifier = MaxentClassifier.train(training, algorithm='GIS', trace=0, max_iter=10, min_lldelta=0.5)
    print "ME Classifier trained..."
    return save_classifier(me_classifier)
开发者ID:Saher-,项目名称:SATC,代码行数:14,代码来源:Classifier_ME.py

示例12: axentClassifier

# 需要导入模块: from nltk.classify import MaxentClassifier [as 别名]
# 或者: from nltk.classify.MaxentClassifier import train [as 别名]
def axentClassifier(features_train, features_test):
	print 'train on %d instances, test on %d instances' % (len(features_train), len(features_test))
	classifier = MaxentClassifier.train(features_train,algorithm='gis')
	print 'accuracy:', nltk.classify.util.accuracy(classifier, features_test)
	precisions, recalls = precision_recall(classifier, features_test)
	print "accuracy: ", precisions, "fitness: ", recalls

# def sklearnMultinomialNB(features_train, features_test):
# 	print 'train on %d instances, test on %d instances' % (len(features_train), len(features_test))
# 	classifier = SklearnClassifier(MultinomialNB())
# 	classifier.train
# 	print 'accuracy:', nltk.classify.util.accuracy(classifier, features_test)
开发者ID:andylikescodes,项目名称:SentimentalAnalysis,代码行数:14,代码来源:Classifiers.py

示例13: trainMaxent

# 需要导入模块: from nltk.classify import MaxentClassifier [as 别名]
# 或者: from nltk.classify.MaxentClassifier import train [as 别名]
def trainMaxent(featuresets):
    #idx = 2*len(featuresets) / ratio
    #train_set, test_set = featuresets[idx:], featuresets[:idx]
    train_set = featuresets
    algo = MaxentClassifier.ALGORITHMS[1]
    #max_iter=20
    classifier = MaxentClassifier.train(train_set, algo, max_iter=3)
    #print accuracy(classifier, test_set)
    classifier.show_most_informative_features(100)
    #train_set, test_set = featuresets[idx:], featuresets[:idx]
    #classifier.train(train_set, algo, max_iter=20)
    #print accuracy(classifier, test_set)
    #classifier.show_most_informative_features(100)
    return classifier
开发者ID:tkuboi,项目名称:eDetection_v2_1,代码行数:16,代码来源:classifyFace.py

示例14: trainCorpus

# 需要导入模块: from nltk.classify import MaxentClassifier [as 别名]
# 或者: from nltk.classify.MaxentClassifier import train [as 别名]
def trainCorpus():
	if os.path.exists(classifier_fname):
		return LoadClassifier()
	else:
		c = getDealsCorpus()
		hiwords = corpus_high_info_words(c)
		featdet = lambda words: bag_of_words_in_set(words, hiwords)
		train_feats, test_feats = corpus_train_test_feats(c, featdet)
		trainf = lambda train_feats: MaxentClassifier.train(train_feats, algorithm='megam', trace=0, max_iter=10)
		labelset = set(c.categories())
		classifiers = train_binary_classifiers(trainf, train_feats, labelset)
		multi_classifier = MultiBinaryClassifier(*classifiers.items())
		multi_p, multi_r, avg_md = multi_metrics(multi_classifier, test_feats)
		print multi_p['activitiesevents'], multi_r['activitiesevents'], avg_md
		SaveClassifier(multi_classifier)
		return multi_classifier
开发者ID:shingjay,项目名称:dealchan,代码行数:18,代码来源:trainer.py

示例15: train

# 需要导入模块: from nltk.classify import MaxentClassifier [as 别名]
# 或者: from nltk.classify.MaxentClassifier import train [as 别名]
 def train(cls, training_sequence, **kwargs):
     feature_detector = kwargs.get('feature_detector')
     gaussian_prior_sigma = kwargs.get('gaussian_prior_sigma', 10)
     count_cutoff = kwargs.get('count_cutoff', 1)
     stopping_condition = kwargs.get('stopping_condition', 1e-7)
     def __featurize(tagged_token):
         tag = tagged_token[-1]
         feats = feature_detector(tagged_token)
         return (feats, tag)
     labeled_featuresets = LazyMap(__featurize, training_sequence)
     classifier = MaxentClassifier.train(labeled_featuresets,
                             algorithm='megam',
                             gaussian_prior_sigma=gaussian_prior_sigma,
                             count_cutoff=count_cutoff,
                             min_lldelta=stopping_condition)
     return cls(classifier._encoding, classifier.weights())
开发者ID:Sandy4321,项目名称:nltk_contrib,代码行数:18,代码来源:train.py


注:本文中的nltk.classify.MaxentClassifier.train方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。