当前位置: 首页>>代码示例>>Python>>正文


Python WordNetLemmatizer.stem方法代码示例

本文整理汇总了Python中nltk.WordNetLemmatizer.stem方法的典型用法代码示例。如果您正苦于以下问题:Python WordNetLemmatizer.stem方法的具体用法?Python WordNetLemmatizer.stem怎么用?Python WordNetLemmatizer.stem使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nltk.WordNetLemmatizer的用法示例。


在下文中一共展示了WordNetLemmatizer.stem方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: text2sents

# 需要导入模块: from nltk import WordNetLemmatizer [as 别名]
# 或者: from nltk.WordNetLemmatizer import stem [as 别名]
def text2sents(text, lemmatize=False, stemmer=None):
    """
    converts a text into a list of sentences consisted of normalized words
    :param text: list of string to process
    :param lemmatize: if true, words will be lemmatized, otherwise -- stemmed
    :param stemmer: stemmer to be used, if None, PortedStemmer is used. Only applyed if lemmatize==False
    :return: list of lists of words
    """
    sents = sent_tokenize(text)

    tokenizer = RegexpTokenizer(r'\w+')

    if lemmatize:
        normalizer = WordNetLemmatizer()
        tagger = PerceptronTagger()
    elif stemmer is None:
        normalizer = PorterStemmer()
    else:
        normalizer = stemmer

    sents_normalized = []

    for sent in sents:
        sent_tokenized = tokenizer.tokenize(sent)
        if lemmatize:
            sent_tagged = tagger.tag(sent_tokenized)
            sent_normalized = [normalizer.lemmatize(w[0], get_wordnet_pos(w[1])) for w in sent_tagged]
        else:
            sent_normalized = [normalizer.stem(w) for w in sent_tokenized]

        sents_normalized.append(sent_normalized)
    return sents_normalized
开发者ID:Dolorousrtur,项目名称:KeywordClassifier,代码行数:34,代码来源:text_processing.py


注:本文中的nltk.WordNetLemmatizer.stem方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。