当前位置: 首页>>代码示例>>Python>>正文


Python Workflow.connect方法代码示例

本文整理汇总了Python中nipype.pipeline.engine.Workflow.connect方法的典型用法代码示例。如果您正苦于以下问题:Python Workflow.connect方法的具体用法?Python Workflow.connect怎么用?Python Workflow.connect使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nipype.pipeline.engine.Workflow的用法示例。


在下文中一共展示了Workflow.connect方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_ants_registration_pipeline

# 需要导入模块: from nipype.pipeline.engine import Workflow [as 别名]
# 或者: from nipype.pipeline.engine.Workflow import connect [as 别名]
def create_ants_registration_pipeline(name='ants_registration'):
    # set fsl output type
    fsl.FSLCommand.set_default_output_type('NIFTI_GZ')
    # initiate workflow
    ants_registration = Workflow(name='ants_registration')
    # inputnode
    inputnode=Node(util.IdentityInterface(fields=['denoised_ts',
    'ants_affine',
    'ants_warp',
    'ref'
    ]),
    name='inputnode')
    # outputnode
    outputnode=Node(util.IdentityInterface(fields=['ants_reg_ts',
    ]),
    name='outputnode')

    #also transform to mni space
    collect_transforms = Node(interface = util.Merge(2),name='collect_transforms')    
    
    ants_reg = Node(ants.ApplyTransforms(input_image_type = 3, dimension = 3, interpolation = 'Linear'), name='ants_reg')
    
    
    
    
    ants_registration.connect([
                          (inputnode, ants_reg, [('denoised_ts', 'input_image')]),
                          (inputnode, ants_reg, [('ref', 'reference_image')]),
                          (inputnode, collect_transforms, [('ants_affine', 'in1')]),
                          (inputnode, collect_transforms, [('ants_warp', 'in2')]),
                          (collect_transforms, ants_reg,  [('out', 'transforms')]),
                          (ants_reg, outputnode, [('output_image', 'ants_reg_ts')])
                          ])
                          
    return ants_registration
开发者ID:fBeyer89,项目名称:LIFE_add_on_rsfMRI,代码行数:37,代码来源:ants_registration.py

示例2: create_normalize_pipeline

# 需要导入模块: from nipype.pipeline.engine import Workflow [as 别名]
# 或者: from nipype.pipeline.engine.Workflow import connect [as 别名]
def create_normalize_pipeline(name='normalize'):
    # workflow
    normalize = Workflow(name='normalize')
    # Define nodes
    inputnode = Node(interface=util.IdentityInterface(fields=['epi_coreg',
                                                              'tr']),
                     name='inputnode')
    outputnode = Node(interface=util.IdentityInterface(fields=[
        'normalized_file']),
        name='outputnode')

    # time-normalize scans
    normalize_time = Node(util.Function(input_names=['in_file', 'tr'],
                                        output_names=['out_file'],
                                        function=time_normalizer),
                          name='normalize_time')
    normalize_time.plugin_args = {'submit_specs': 'request_memory = 17000'}
    normalize.connect([(inputnode, normalize_time, [('tr', 'tr')]),
                       (inputnode, normalize_time, [('epi_coreg', 'in_file')]),
                       (normalize_time, outputnode, [('out_file', 'normalized_file')])
                       ])

    # time-normalize scans    

    return normalize
开发者ID:fBeyer89,项目名称:LIFE_Lemon_mod_mod,代码行数:27,代码来源:normalize.py

示例3: create_smoothing_pipeline

# 需要导入模块: from nipype.pipeline.engine import Workflow [as 别名]
# 或者: from nipype.pipeline.engine.Workflow import connect [as 别名]
def create_smoothing_pipeline(name='smoothing'):
    # set fsl output type
    fsl.FSLCommand.set_default_output_type('NIFTI')
    # initiate workflow
    smoothing = Workflow(name='smoothing')
    # inputnode
    inputnode=Node(util.IdentityInterface(fields=['ts_transformed',
    'fwhm'
    ]),
    name='inputnode')
    # outputnode
    outputnode=Node(util.IdentityInterface(fields=['ts_smoothed'
    ]),
    name='outputnode')
    
    
    #apply smoothing
    smooth = Node(fsl.Smooth(),name = 'smooth')
   
    
    smoothing.connect([
    (inputnode, smooth, [
    ('ts_transformed', 'in_file'),
    ('fwhm', 'fwhm')]
    ), 
    (smooth, outputnode, [('smoothed_file', 'ts_smoothed')]
    )
    ])
    
 



    
    return smoothing
开发者ID:fBeyer89,项目名称:LIFE_add_on_rsfMRI,代码行数:37,代码来源:smoothing.py

示例4: gICA_AROMA

# 需要导入模块: from nipype.pipeline.engine import Workflow [as 别名]
# 或者: from nipype.pipeline.engine.Workflow import connect [as 别名]
def gICA_AROMA():

	flow  = Workflow('denoise_ica_aroma')

	inputnode  = Node(util.IdentityInterface(fields=['fslDir', 'inFile', 'mask', 'dim', 'TR', 'mc', 'denType']),
					 name = 'inputnode')

	outputnode = Node(util.IdentityInterface(fields=['denoised']),
					 name = 'outputnode')

	aroma = Node(util.Function(input_names   = ['fslDir', 'inFile',  'mask',
											   'dim', 'TR', 'mc', 'denType'],
							   output_names  =['denoised'],
							   function      =ica_aroma_denoise),
							   name ='ICA_AROMA')

	flow.connect(inputnode,        'fslDir',   aroma,     'fslDir'      )
	flow.connect(inputnode,        'inFile',   aroma,     'inFile'      )
	flow.connect(inputnode,        'mask',     aroma,     'mask'        )
	flow.connect(inputnode,        'dim',      aroma,     'dim'         )
	flow.connect(inputnode,        'TR',       aroma,     'TR'          )
	flow.connect(inputnode,        'mc',       aroma,     'mc'          )
	flow.connect(inputnode,        'denType',  aroma,     'denType'     )
	flow.connect(aroma,            'denoised', outputnode,'denoised'  )

	return flow
开发者ID:amadeuskanaan,项目名称:GluREST,代码行数:28,代码来源:ica_aroma_native.py

示例5: create_reconall_pipeline

# 需要导入模块: from nipype.pipeline.engine import Workflow [as 别名]
# 或者: from nipype.pipeline.engine.Workflow import connect [as 别名]
def create_reconall_pipeline(name='reconall'):
    
    reconall=Workflow(name='reconall')

    #inputnode 
    inputnode=Node(util.IdentityInterface(fields=['anat', 
                                                  'fs_subjects_dir',
                                                  'fs_subject_id'
                                                  ]),
                   name='inputnode')
    
    outputnode=Node(util.IdentityInterface(fields=['fs_subjects_dir',
                                                   'fs_subject_id']),
                    name='outputnode')
    
    # run reconall
    recon_all = create_skullstripped_recon_flow()
    
    
    # function to replace / in subject id string with a _
    def sub_id(sub_id):
        return sub_id.replace('/','_')
    
    reconall.connect([(inputnode, recon_all, [('fs_subjects_dir', 'inputspec.subjects_dir'),
                                              ('anat', 'inputspec.T1_files'),
                                              (('fs_subject_id', sub_id), 'inputspec.subject_id')]),
                      (recon_all, outputnode, [('outputspec.subject_id', 'fs_subject_id'),
                                               ('outputspec.subjects_dir', 'fs_subjects_dir')])
                      ])
    
    
    return reconall
开发者ID:JanisReinelt,项目名称:pipelines,代码行数:34,代码来源:reconall_noskullstrip.py

示例6: create_slice_timing_pipeline

# 需要导入模块: from nipype.pipeline.engine import Workflow [as 别名]
# 或者: from nipype.pipeline.engine.Workflow import connect [as 别名]
def create_slice_timing_pipeline(name='slicetiming'):
    # set fsl output type
    fsl.FSLCommand.set_default_output_type('NIFTI')
    # initiate workflow
    slicetiming = Workflow(name='slicetiming')
    # inputnode
    inputnode = Node(util.IdentityInterface(fields=['ts'
                                                    ]),
                     name='inputnode')
    # outputnode
    outputnode = Node(util.IdentityInterface(fields=['ts_slicetcorrected'
                                                     ]),
                      name='outputnode')


    # use FSL slicetiming (default ascending bottom to top)
    timer = Node(fsl.SliceTimer(), name='timer')
    timer.inputs.time_repetition = 2.0

    slicetiming.connect([
        (inputnode, timer, [
            ('ts', 'in_file')]
         ),
        (timer, outputnode, [('slice_time_corrected_file', 'ts_slicetcorrected')]
         )
    ])

    return slicetiming
开发者ID:fBeyer89,项目名称:LIFE_Lemon_mod_mod,代码行数:30,代码来源:slicetiming_correction.py

示例7: create_visualize_pipeline

# 需要导入模块: from nipype.pipeline.engine import Workflow [as 别名]
# 或者: from nipype.pipeline.engine.Workflow import connect [as 别名]
def create_visualize_pipeline(name='visualize'):

    # initiate workflow
    visualize = Workflow(name='visualize')
    # inputnode
    inputnode=Node(util.IdentityInterface(fields=['ts_transformed',
    'mni_template'
    ]),
    name='inputnode')
    # outputnode
    outputnode=Node(util.IdentityInterface(fields=['output_image'
    ]),
    name='outputnode')
    
    
    #apply smoothing
    slicer = Node(fsl.Slicer(sample_axial=6, image_width=750),name = 'smooth')
   
    
    visualize.connect([
    (inputnode, slicer, [('ts_transformed', 'in_file'),('mni_template', 'image_edges')]),     
    (slicer, outputnode,[('out_file', 'output_image')])
    ])
    
 
   
    return visualize
开发者ID:fBeyer89,项目名称:LIFE_add_on_rsfMRI,代码行数:29,代码来源:visualize.py

示例8: func2mni_wf

# 需要导入模块: from nipype.pipeline.engine import Workflow [as 别名]
# 或者: from nipype.pipeline.engine.Workflow import connect [as 别名]
def func2mni_wf():

    mni_skull_2mm = '/usr/share/fsl/5.0/data/standard/MNI152_T1_2mm.nii.gz'
    mni_brain_2mm   = '/usr/share/fsl/5.0/data/standard/MNI152_T1_2mm_brain.nii.gz'

    flow  = Workflow('func2mni_nonlinear')

    inputnode  = Node(util.IdentityInterface(fields=['func_image',
                                                     'reference_image',
                                                     'func2anat_affine',
                                                     'anat2mni_warp']),name = 'inputnode')

    outputnode = Node(util.IdentityInterface(fields=['func2mni_2mm',
                                                     'func2mni_4mm']),name = 'outputnode')

    applywarp = Node(fsl.ApplyWarp(), name = 'apply_warp',)
    applywarp.inputs.ref_file            = mni_brain_2mm

    flirt4mm = Node(fsl.FLIRT(), name = 'resample_4mm')
    flirt4mm.inputs.reference         = mni_brain_2mm
    flirt4mm.inputs.apply_isoxfm      = 4.0

    flow.connect(inputnode, 'func_image'        , applywarp,  'in_file')
    flow.connect(inputnode, 'anat2mni_warp'     , applywarp,  'field_file')
    flow.connect(inputnode, 'func2anat_affine'  , applywarp,  'premat')
    flow.connect(applywarp, 'out_file'          , flirt4mm,   'in_file')

    flow.connect(applywarp, 'out_file'          , outputnode, 'func2mni_2mm')
    flow.connect(flirt4mm,  'out_file'          , outputnode, 'func2mni_4mm')

    return flow
开发者ID:amadeuskanaan,项目名称:GluREST,代码行数:33,代码来源:transforms.py

示例9: create_reconall_pipeline

# 需要导入模块: from nipype.pipeline.engine import Workflow [as 别名]
# 或者: from nipype.pipeline.engine.Workflow import connect [as 别名]
def create_reconall_pipeline(name='reconall'):
    reconall = Workflow(name='reconall')
    # inputnode
    inputnode = Node(util.IdentityInterface(fields=['anat',
                                                    'fs_subjects_dir',
                                                    'fs_subject_id'
                                                    ]),
                     name='inputnode')
    outputnode = Node(util.IdentityInterface(fields=['fs_subjects_dir',
                                                     'fs_subject_id']),
                      name='outputnode')
    # run reconall
    recon_all = Node(fs.ReconAll(args='-autorecon2 -nuiterations 7 -no-isrunning -hippo-subfields'),
                     name="recon_all")
    # recon_all.inputs.directive= 'autorecon2-wm' # -autorecon3
    recon_all.plugin_args = {'submit_specs': 'request_memory = 9000'}
    # function to replace / in subject id string with a _
    def sub_id(sub_id):
        return sub_id.replace('/', '_')

    reconall.connect([(inputnode, recon_all, [('fs_subjects_dir', 'subjects_dir'),
                                              ('anat', 'T1_files'),
                                              (('fs_subject_id', sub_id), 'subject_id')]),
                      (recon_all, outputnode, [('subject_id', 'fs_subject_id'),
                                               ('subjects_dir', 'fs_subjects_dir')])
                      ])
    return reconall
开发者ID:fBeyer89,项目名称:LIFE_Lemon_mod_mod,代码行数:29,代码来源:reconall.py

示例10: create_dcmconvert_pipeline

# 需要导入模块: from nipype.pipeline.engine import Workflow [as 别名]
# 或者: from nipype.pipeline.engine.Workflow import connect [as 别名]
def create_dcmconvert_pipeline(name='dcmconvert'):
    
    from nipype.pipeline.engine import Node, Workflow
    import nipype.interfaces.utility as util
    from nipype.interfaces.dcmstack import DcmStack

    # workflow
    dcmconvert = Workflow(name='dcmconvert')
    
    #inputnode 
    inputnode=Node(util.IdentityInterface(fields=['dicoms',
                                                  'filename']),
                   name='inputnode')
    
    # outputnode                                     
    outputnode=Node(util.IdentityInterface(fields=['nifti']),
                    name='outputnode')
    
    # conversion node
    converter = Node(DcmStack(embed_meta=True),
                     name='converter')
    
    # connections
    dcmconvert.connect([(inputnode, converter, [('dicoms', 'dicom_files'),
                                                ('filename','out_format')]),
                        (converter, outputnode, [('out_file','nifti')])])
    
    return dcmconvert
开发者ID:JanisReinelt,项目名称:pipelines,代码行数:30,代码来源:dcmconvert.py

示例11: create_mgzconvert_pipeline

# 需要导入模块: from nipype.pipeline.engine import Workflow [as 别名]
# 或者: from nipype.pipeline.engine.Workflow import connect [as 别名]
def create_mgzconvert_pipeline(name='mgzconvert'):
    # workflow
    mgzconvert = Workflow(name='mgzconvert')
    # inputnode
    inputnode = Node(util.IdentityInterface(fields=['fs_subjects_dir', 'fs_subject_id']), name='inputnode')
    # outputnode
    outputnode = Node(util.IdentityInterface(fields=['anat_head',
                                                     'anat_brain',
                                                     'anat_brain_mask',
                                                     'wmseg',
                                                     'wmedge']),
                      name='outputnode')
    # import files from freesurfer
    fs_import = Node(interface=nio.FreeSurferSource(),
                     name='fs_import')
    # convert Freesurfer T1 file to nifti
    head_convert = Node(fs.MRIConvert(out_type='niigz',
                                      out_file='T1.nii.gz'),
                        name='head_convert')
    # create brainmask from aparc+aseg with single dilation
    def get_aparc_aseg(files):
        for name in files:
            if 'aparc+aseg' in name:
                return name

    # create brain by converting only freesurfer output
    brain_convert = Node(fs.MRIConvert(out_type='niigz',
                                       out_file='brain.nii.gz'),
                         name='brain_convert')
    brain_binarize = Node(fsl.ImageMaths(op_string='-bin -fillh', out_file='T1_brain_mask.nii.gz'), name='brain_binarize')

    # cortical and cerebellar white matter volumes to construct wm edge
    # [lh cerebral wm, lh cerebellar wm, rh cerebral wm, rh cerebellar wm, brain stem]
    wmseg = Node(fs.Binarize(out_type='nii.gz',
                             match=[2, 7, 41, 46, 16],
                             binary_file='T1_brain_wmseg.nii.gz'),
                 name='wmseg')
    # make edge from wmseg to visualize coregistration quality
    edge = Node(fsl.ApplyMask(args='-edge -bin',
                              out_file='T1_brain_wmedge.nii.gz'),
                name='edge')
    # connections
    mgzconvert.connect([(inputnode, fs_import, [('fs_subjects_dir', 'subjects_dir'),
                                                ('fs_subject_id', 'subject_id')]),
                        (fs_import, head_convert, [('T1', 'in_file')]),
                        (fs_import, wmseg, [(('aparc_aseg', get_aparc_aseg), 'in_file')]),
                        (fs_import, brain_convert, [('brainmask', 'in_file')]),
                        (wmseg, edge, [('binary_file', 'in_file'),
                                       ('binary_file', 'mask_file')]),
                        (head_convert, outputnode, [('out_file', 'anat_head')]),
                        (brain_convert, outputnode, [('out_file', 'anat_brain')]),
                        (brain_convert, brain_binarize, [('out_file', 'in_file')]),
                        (brain_binarize, outputnode, [('out_file', 'anat_brain_mask')]),
                        (wmseg, outputnode, [('binary_file', 'wmseg')]),
                        (edge, outputnode, [('out_file', 'wmedge')])
                        ])

    return mgzconvert
开发者ID:fBeyer89,项目名称:LIFE_Lemon_mod_mod,代码行数:60,代码来源:mgzconvert.py

示例12: create_normalize_pipeline

# 需要导入模块: from nipype.pipeline.engine import Workflow [as 别名]
# 或者: from nipype.pipeline.engine.Workflow import connect [as 别名]
def create_normalize_pipeline(name='normalize'):
    
    # workflow
    normalize=Workflow(name='normalize')
    
    # inputnode
    inputnode=Node(util.IdentityInterface(fields=['anat',
                                                  'standard']),
                   name='inputnode')
    
    # outputnode                                 
    outputnode=Node(util.IdentityInterface(fields=['anat2std_transforms',
                                                   'anat2std',
                                                   'std2anat_transforms',
                                                   'std2anat']),
                    name='outputnode')
    
    # normalization with ants
    antsreg= Node(ants.Registration(dimension=3,
                                    transforms=['Rigid','Affine','SyN'],
                                    metric=['MI','MI','CC'],
                                    metric_weight=[1,1,1],
                                    number_of_iterations=[[1000,500,250,100],[1000,500,250,100],[100,70,50,20]],
                                    convergence_threshold=[1e-6,1e-6,1e-6],
                                    convergence_window_size=[10,10,10],
                                    shrink_factors=[[8,4,2,1],[8,4,2,1],[8,4,2,1]],
                                    smoothing_sigmas=[[3,2,1,0],[3,2,1,0],[3,2,1,0]],
                                    sigma_units=['vox','vox','vox'],
                                    initial_moving_transform_com=1,
                                    transform_parameters=[(0.1,),(0.1,),(0.1,3.0,0.0)],
                                    sampling_strategy=['Regular', 'Regular', 'None'],
                                    sampling_percentage=[0.25,0.25,1],
                                    radius_or_number_of_bins=[32,32,4],
                                    num_threads=1,
                                    interpolation='Linear',
                                    winsorize_lower_quantile=0.005,
                                    winsorize_upper_quantile=0.995,
                                    collapse_output_transforms=True,
                                    output_inverse_warped_image=True,
                                    output_warped_image=True,
                                    use_histogram_matching=True,
                                    ),
                  name='antsreg')
       
    
    # connections
    normalize.connect([(inputnode, antsreg, [('anat', 'moving_image'),
                                             ('standard', 'fixed_image')]),
                       (antsreg, outputnode, [('forward_transforms', 'anat2std_transforms'),
                                              ('reverse_transforms', 'std2anat_transforms'),
                                              ('warped_image', 'anat2std'),
                                              ('inverse_warped_image', 'std2anat')])
                        ])
     
    return normalize
开发者ID:JanisReinelt,项目名称:pipelines,代码行数:57,代码来源:ants.py

示例13: create_mp2rage_pipeline

# 需要导入模块: from nipype.pipeline.engine import Workflow [as 别名]
# 或者: from nipype.pipeline.engine.Workflow import connect [as 别名]
def create_mp2rage_pipeline(name='mp2rage'):
    
    # workflow
    mp2rage = Workflow('mp2rage')
    
    # inputnode 
    inputnode=Node(util.IdentityInterface(fields=['inv2',
                                                  'uni',
                                                  't1map']),
               name='inputnode')
    
    # outputnode                                     
    outputnode=Node(util.IdentityInterface(fields=['uni_masked',
                                                   'background_mask',
                                                   'uni_stripped',
                                                   #'skullstrip_mask',
                                                   #'uni_reoriented'
                                                   ]),
                name='outputnode')
    
    # remove background noise
    background = Node(JistIntensityMp2rageMasking(outMasked=True,
                                            outMasked2=True,
                                            outSignal2=True), 
                      name='background')
    
    # skullstrip
    strip = Node(MedicAlgorithmSPECTRE2010(outStripped=True,
                                           outMask=True,
                                           outOriginal=True,
                                           inOutput='true',
                                           inFind='true',
                                           inMMC=4
                                           ), 
                 name='strip')
    
    # connections
    mp2rage.connect([(inputnode, background, [('inv2', 'inSecond'),
                                              ('t1map', 'inQuantitative'),
                                              ('uni', 'inT1weighted')]),
                     (background, strip, [('outMasked2','inInput')]),
                     (background, outputnode, [('outMasked2','uni_masked'),
                                               ('outSignal2','background_mask')]),
                    (strip, outputnode, [('outStripped','uni_stripped'),
                                         #('outMask', 'skullstrip_mask'),
                                         #('outOriginal','uni_reoriented')
                                         ])
                     ])
    
    
    return mp2rage
开发者ID:JanisReinelt,项目名称:pipelines,代码行数:53,代码来源:mp2rage_cbstools.py

示例14: create_converter_structural_pipeline

# 需要导入模块: from nipype.pipeline.engine import Workflow [as 别名]
# 或者: from nipype.pipeline.engine.Workflow import connect [as 别名]
def create_converter_structural_pipeline(working_dir, ds_dir, name="converter_struct"):
    # initiate workflow
    converter_wf = Workflow(name=name)
    converter_wf.base_dir = os.path.join(working_dir, "LeiCA_resting")

    # set fsl output
    fsl.FSLCommand.set_default_output_type("NIFTI_GZ")

    # inputnode
    inputnode = Node(util.IdentityInterface(fields=["t1w_dicom"]), name="inputnode")

    outputnode = Node(util.IdentityInterface(fields=["t1w"]), name="outputnode")

    niftisink = Node(nio.DataSink(), name="niftisink")
    niftisink.inputs.base_directory = os.path.join(ds_dir, "raw_niftis")

    # convert to nifti
    # todo check if geometry bugs attac. use dcm2nii?
    converter_t1w = Node(DcmStack(embed_meta=True), name="converter_t1w")
    converter_t1w.plugin_args = {"submit_specs": "request_memory = 2000"}
    converter_t1w.inputs.out_format = "t1w"

    converter_wf.connect(inputnode, "t1w_dicom", converter_t1w, "dicom_files")

    # reorient to standard orientation
    reor_2_std = Node(fsl.Reorient2Std(), name="reor_2_std")
    converter_wf.connect(converter_t1w, "out_file", reor_2_std, "in_file")

    converter_wf.connect(reor_2_std, "out_file", outputnode, "t1w")

    # save original niftis
    converter_wf.connect(reor_2_std, "out_file", niftisink, "sMRI")

    converter_wf.write_graph(dotfilename="converter_struct", graph2use="flat", format="pdf")
    return converter_wf
开发者ID:NeuroanatomyAndConnectivity,项目名称:LeiCA,代码行数:37,代码来源:converter.py

示例15: create_brainextract_pipeline

# 需要导入模块: from nipype.pipeline.engine import Workflow [as 别名]
# 或者: from nipype.pipeline.engine.Workflow import connect [as 别名]
def create_brainextract_pipeline(name='brainextract'):
    # workflow
    brainextract = Workflow(name='brainextract')
    #inputnode
    inputnode=Node(util.IdentityInterface(fields=['anat', 'fraction']),
                   name='inputnode')
    #outputnode
    outputnode=Node(util.IdentityInterface(fields=['anat_brain', 'anat_brain_mask']),
                    name='outputnode')
    #use bet brain extraction
    bet = Node(interface=fsl.BET(mask=True),
               name = 'bet')
  
    # connections
    brainextract.connect([(inputnode, bet, [('anat','in_file'),
    ('fraction', 'frac')]),
    (bet, outputnode, [('out_file', 'anat_brain')]),
    (bet, outputnode, [('mask_file', 'anat_brain_mask')])
    ])
    
    return brainextract
开发者ID:fBeyer89,项目名称:LIFE_rs_ICA_preprocessing,代码行数:23,代码来源:brainextract.py


注:本文中的nipype.pipeline.engine.Workflow.connect方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。