本文整理汇总了Python中nipype.interfaces.fsl.Info.standard_image方法的典型用法代码示例。如果您正苦于以下问题:Python Info.standard_image方法的具体用法?Python Info.standard_image怎么用?Python Info.standard_image使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nipype.interfaces.fsl.Info
的用法示例。
在下文中一共展示了Info.standard_image方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: run_feat
# 需要导入模块: from nipype.interfaces.fsl import Info [as 别名]
# 或者: from nipype.interfaces.fsl.Info import standard_image [as 别名]
def run_feat(bold_file, bold_folder, brainmask_file, feat_gen):
from nipype.interfaces.fsl import ImageStats, FEAT, Info
# from bm_functions import gen_default_feat_config
from numpy import shape
from textwrap import dedent
fslFilename = bold_folder + 'feat.fsf'
# Get the number of voxels in the 4D file
statComp = ImageStats()
statComp.inputs.in_file = bold_file
statComp.inputs.op_string = '-v'
numVox = int(statComp.run().outputs.out_stat[0])
# Get the number of raw volumes
statComp.inputs.split_4d = True
numVol = shape(statComp.run().outputs.out_stat)[0]
# Generate the file
standard_T1_brain = Info.standard_image('MNI152_T1_2mm_brain')
theString = feat_gen(bold_folder, bold_file, brainmask_file, standard_T1_brain, numVox, numVol)
with open(fslFilename,'w') as out_file:
out_file.write(dedent(theString))
out_file.close()
# Run feat using the previously manipulated config
runFeat = FEAT(fsf_file = fslFilename)
# Run and pass back the foldername
return runFeat.run().outputs.feat_dir
示例2: test_tbss_skeleton
# 需要导入模块: from nipype.interfaces.fsl import Info [as 别名]
# 或者: from nipype.interfaces.fsl.Info import standard_image [as 别名]
def test_tbss_skeleton():
skeletor = fsl.TractSkeleton()
files, newdir, olddir = create_files_in_directory()
# Test the underlying command
yield assert_equal, skeletor.cmd, "tbss_skeleton"
# It shouldn't run yet
yield assert_raises, ValueError, skeletor.run
# Test the most basic way to use it
skeletor.inputs.in_file = files[0]
# First by implicit argument
skeletor.inputs.skeleton_file = True
yield assert_equal, skeletor.cmdline, \
"tbss_skeleton -i a.nii -o %s"%os.path.join(newdir, "a_skeleton.nii")
# Now with a specific name
skeletor.inputs.skeleton_file = "old_boney.nii"
yield assert_equal, skeletor.cmdline, "tbss_skeleton -i a.nii -o old_boney.nii"
# Now test the more complicated usage
bones = fsl.TractSkeleton(in_file="a.nii", project_data=True)
# This should error
yield assert_raises, ValueError, bones.run
# But we can set what we need
bones.inputs.threshold = 0.2
bones.inputs.distance_map = "b.nii"
bones.inputs.data_file = "b.nii" # Even though that's silly
# Now we get a command line
yield assert_equal, bones.cmdline, \
"tbss_skeleton -i a.nii -p 0.200 b.nii %s b.nii %s"%(Info.standard_image("LowerCingulum_1mm.nii.gz"),
os.path.join(newdir, "b_skeletonised.nii"))
# Can we specify a mask?
bones.inputs.use_cingulum_mask = Undefined
bones.inputs.search_mask_file = "a.nii"
yield assert_equal, bones.cmdline, \
"tbss_skeleton -i a.nii -p 0.200 b.nii a.nii b.nii %s"%os.path.join(newdir, "b_skeletonised.nii")
# Looks good; clean up
clean_directory(newdir, olddir)
示例3: Registration
# 需要导入模块: from nipype.interfaces.fsl import Info [as 别名]
# 或者: from nipype.interfaces.fsl.Info import standard_image [as 别名]
from nipype.pipeline.engine import Workflow, Node, MapNode
from nipype.interfaces.fsl import Info
# FreeSurfer - Specify the location of the freesurfer folder
fs_dir = '/data/adamt/Apps/fs6beta'
FSCommand.set_default_subjects_dir(fs_dir)
# Specify variables
experiment_dir = '/data/Hippo_hr/cpb/' # location of experiment folder
input_dir_1st = 'output_ANTS_test_1st_lvl' # name of 1st-level output folder
output_dir = 'output_ANTS_test_norm' # name of norm output folder
working_dir = '/home/zhoud4/Hippo_hr/cpb/ants1/lhipp3_batch/' # name of norm working directory
subject_list = ['d701', 'd702', 'd703'] # list of subject identifiers
# location of template file
template = Info.standard_image('.nii.gz')
# Registration (good) - computes registration between subject's structural and MNI template.
antsreg = Node(Registration(args='--float',
collapse_output_transforms=True,
fixed_image=template,
initial_moving_transform_com=True,
num_threads=1,
output_inverse_warped_image=True,
output_warped_image=True,
sigma_units=['vox']*3,
transforms=['Rigid', 'Affine', 'SyN'],
terminal_output='file',
winsorize_lower_quantile=0.005,
winsorize_upper_quantile=0.995,
convergence_threshold=[1e-06],
示例4: Node
# 需要导入模块: from nipype.interfaces.fsl import Info [as 别名]
# 或者: from nipype.interfaces.fsl.Info import standard_image [as 别名]
FSCommand.set_default_subjects_dir(fs_dir)
###
# Specify variables
experiment_dir = '~/nipype_tutorial' # location of experiment folder
input_dir_1st = 'output_fMRI_example_1st' # name of 1st-level output folder
output_dir = 'output_fMRI_example_norm_ants' # name of norm output folder
working_dir = 'workingdir_fMRI_example_norm_ants' # name of norm working directory
subject_list = ['sub001', 'sub002', 'sub003',
'sub004', 'sub005', 'sub006',
'sub007', 'sub008', 'sub009',
'sub010'] # list of subject identifiers
# location of template file
template = Info.standard_image('MNI152_T1_1mm_brain.nii.gz')
###
# Specify Normalization Nodes
# Registration - computes registration between subject's structural and MNI template.
antsreg = Node(Registration(args='--float',
collapse_output_transforms=True,
fixed_image=template,
initial_moving_transform_com=True,
num_threads=1,
output_inverse_warped_image=True,
output_warped_image=True,
sigma_units=['vox']*3,
transforms=['Rigid', 'Affine', 'SyN'],
开发者ID:JanisReinelt,项目名称:nipype-beginner-s-guide,代码行数:33,代码来源:example_fMRI_2_normalize_ANTS_partial.py
示例5: custom_level1design_feat
# 需要导入模块: from nipype.interfaces.fsl import Info [as 别名]
# 或者: from nipype.interfaces.fsl.Info import standard_image [as 别名]
#.........这里部分代码省略.........
'up': 1, 1: 1,
'down': 2, 2: 2},
motion_correction={True: 1, 1: 1, False: 0, 0: 0, None: 0},
bet={True: 1, 1: 1, False: 0, 0: 0, None: 0},
motion_regression={'no': 0, False: 0, None: 0,
'yes': 1, True: 1, 1: 1,
'ext': 2, 2: 2},
thresholding={'none': 0, None: 0, 'no': 0, 0: 0,
'uncorrected': 1, 'Uncorrected': 1, 1: 1,
'voxel': 2, 'Voxel': 2, 2: 2,
'cluster': 3, 'Cluster': 3, 3: 3},
prewhitening={True: 1, 1: 1, False: 0, None: 0, 0: 0},
hrf={'doublegamma': 3,
'none': 0, None: 0,
'gaussian': 1,
'gamma': 2,
'gammabasisfunctions': 4}, #,
#'sinebasisfunctions': 5,
#'firbasisfunctions': 6},
open_feat_html={True: 1, 1: 1,
False: 0, 0: 0, None: 0}
)
reg_dict = {'full': {'reghighres_yn': 1,
'reghighres_dof': 'BBR',
'regstandard_yn': 1,
'regstandard': Info.standard_image('MNI152_T1_2mm_brain.nii.gz'),
'regstandard_dof': 12,
'regstandard_nonlinear_yn': 1},
'none': {'reghighres_yn': 0,
'regstandard_yn': 0},
'fmriprep': {'reghighres_yn': 0,
'regstandard_yn': 1,
'regstandard_dof': 3,
'regstandard_nonlinear_yn': 0}
}
data_dir = op.join(op.dirname(spynoza.__file__), 'data')
fsf_template = op.join(data_dir, 'fsf_templates', 'firstlevel_template.fsf')
with open(fsf_template, 'r') as f:
fsf_template = f.readlines()
fsf_template = [txt.replace('\n', '') for txt in fsf_template if txt != '\n']
fsf_template = [txt for txt in fsf_template if txt[0] != '#'] # remove commnts
hdr = nib.load(func_file).header
args = {'outputdir': "\"%s\"" % output_dirname,
'tr': hdr['pixdim'][4],
'npts': hdr['dim'][4],
'smooth': smoothing,
'deriv_yn': arg_dict['temp_deriv'][temp_deriv],
'temphp_yn': 1 if highpass else 0,
'paradigm_hp': highpass,
'st': arg_dict['slicetiming'][slicetiming],
'mc': arg_dict['motion_correction'][motion_correction],
'bet_yn': arg_dict['bet'][bet],