当前位置: 首页>>代码示例>>Python>>正文


Python testing.assert_true函数代码示例

本文整理汇总了Python中nipy.testing.assert_true函数的典型用法代码示例。如果您正苦于以下问题:Python assert_true函数的具体用法?Python assert_true怎么用?Python assert_true使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了assert_true函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_scaling_io_dtype

def test_scaling_io_dtype():
    # Does data dtype get set?
    # Is scaling correctly applied?
    rng = np.random.RandomState(19660520) # VBD
    ulp1_f32 = np.finfo(np.float32).eps
    types = (np.uint8, np.uint16, np.int16, np.int32, np.float32)
    with InTemporaryDirectory():
        for in_type in types:
            for out_type in types:
                data, _ = randimg_in2out(rng, in_type, out_type, 'img.nii')
                img = load_image('img.nii')
                # Check the output type is as expected
                hdr = img.metadata['header']
                assert_equal(hdr.get_data_dtype().type, out_type)
                # Check the data is within reasonable bounds. The exact bounds
                # are a little annoying to calculate - see
                # nibabel/tests/test_round_trip for inspiration
                data_back = img.get_data().copy() # copy to detach from file
                del img
                top = np.abs(data - data_back)
                nzs = (top !=0) & (data !=0)
                abs_err = top[nzs]
                if abs_err.size != 0: # all exact, that's OK.
                    continue
                rel_err = abs_err / data[nzs]
                if np.dtype(out_type).kind in 'iu':
                    slope, inter = hdr.get_slope_inter()
                    abs_err_thresh = slope / 2.0
                    rel_err_thresh = ulp1_f32
                elif np.dtype(out_type).kind == 'f':
                    abs_err_thresh = big_bad_ulp(data.astype(out_type))[nzs]
                    rel_err_thresh = ulp1_f32
                assert_true(np.all(
                    (abs_err <= abs_err_thresh) |
                    (rel_err <= rel_err_thresh)))
开发者ID:Zebulias,项目名称:nipy,代码行数:35,代码来源:test_image_io.py

示例2: test_series_from_mask

def test_series_from_mask():
    """ Test the smoothing of the timeseries extraction
    """
    # A delta in 3D
    data = np.zeros((40, 40, 40, 2))
    data[20, 20, 20] = 1
    mask = np.ones((40, 40, 40), dtype=np.bool)
    with InTemporaryDirectory():
        for affine in (np.eye(4), np.diag((1, 1, -1, 1)),
                        np.diag((.5, 1, .5, 1))):
            img = nib.Nifti1Image(data, affine)
            nib.save(img, 'testing.nii')
            series, header = series_from_mask('testing.nii', mask, smooth=9)
            series = np.reshape(series[:, 0], (40, 40, 40))
            vmax = series.max()
            # We are expecting a full-width at half maximum of
            # 9mm/voxel_size:
            above_half_max = series > .5*vmax
            for axis in (0, 1, 2):
                proj = np.any(np.any(np.rollaxis(above_half_max,
                                axis=axis), axis=-1), axis=-1)
                assert_equal(proj.sum(), 9/np.abs(affine[axis, axis]))

        # Check that NaNs in the data do not propagate
        data[10, 10, 10] = np.NaN
        img = nib.Nifti1Image(data, affine)
        nib.save(img, 'testing.nii')
        series, header = series_from_mask('testing.nii', mask, smooth=9)
        assert_true(np.all(np.isfinite(series)))
开发者ID:VirgileFritsch,项目名称:nipy,代码行数:29,代码来源:test_mask.py

示例3: test_model_selection_mfx_spatial_rand_walk

def test_model_selection_mfx_spatial_rand_walk():
    prng = np.random.RandomState(10)
    data, XYZ, XYZvol, vardata, signal = make_data(n=20, 
                                dim=np.array([1,20,20]), 
                                r=3, amplitude=3, noise=1,
                                jitter=0.5, prng=prng)
    labels = (signal > 0).astype(int)
    P = os.multivariate_stat(data, vardata, XYZ, std=0.5, sigma=5, labels=labels)
    P.network[:] = 0
    P.init_hidden_variables()
    P.evaluate(nsimu=100, burnin=100, verbose=verbose, 
                proposal='rand_walk', proposal_std=0.5)
    L00 = P.compute_log_region_likelihood()
    # Test simulated annealing procedure
    P.estimate_displacements_SA(nsimu=100, c=0.99, 
        proposal_std=P.proposal_std, verbose=verbose)
    L0 = P.compute_log_region_likelihood()
    yield assert_true(L0.sum() > L00.sum())
    #Prior0 = P.compute_log_prior()
    #Post0 = P.compute_log_posterior(nsimu=1e2, burnin=1e2, verbose=verbose)
    #M0 = L0 + Prior0[:-1] - Post0[:-1]
    M0 = P.compute_marginal_likelihood(update_spatial=True)
    #yield assert_almost_equal(M0.sum(), P.compute_marginal_likelihood(verbose=verbose).sum(), 0)
    P.network[1] = 1
    #P.init_hidden_variables(init_spatial=False)
    P.init_hidden_variables(init_spatial=False)
    P.evaluate(nsimu=100, burnin=100, verbose=verbose, 
                update_spatial=False, proposal_std=P.proposal_std)
    #L1 = P.compute_log_region_likelihood()
    #Prior1 = P.compute_log_prior()
    #Post1 = P.compute_log_posterior(nsimu=1e2, burnin=1e2, verbose=verbose)
    #M1 = L1 + Prior1[:-1] - Post1[:-1]
    M1 = P.compute_marginal_likelihood(update_spatial=True)
    #yield assert_almost_equal(0.1*M1.sum(), 0.1*P.compute_marginal_likelihood(verbose=verbose).sum(), 0)
    yield assert_true(M1 > M0)
开发者ID:cindeem,项目名称:nipy,代码行数:35,代码来源:test_spatial_relaxation_onesample.py

示例4: test_model_selection_exact

def test_model_selection_exact():
    prng = np.random.RandomState(10)
    data, XYZ, XYZvol, vardata, signal = make_data(n=30, dim=20, r=3, 
                amplitude=1, noise=0, jitter=0, prng=prng)
    labels = (signal > 0).astype(int)
    P1 = os.multivariate_stat(data, labels=labels)
    P1.init_hidden_variables()
    P1.evaluate(nsimu=100, burnin=10, verbose=verbose)
    L1 = P1.compute_log_region_likelihood()
    Prior1 = P1.compute_log_prior()
    #v, m_mean, m_var = P1.v.copy(), P1.m_mean.copy(), P1.m_var.copy()
    Post1 = P1.compute_log_posterior(nsimu=1e2, burnin=1e2, verbose=verbose)
    M1 = L1 + Prior1[:-1] - Post1[:-1]
    yield assert_almost_equal(M1.mean(), 
                              P1.compute_marginal_likelihood().mean(), 0)
    P0 = os.multivariate_stat(data, labels=labels)
    P0.network *= 0
    P0.init_hidden_variables()
    P0.evaluate(nsimu=100, burnin=100, verbose=verbose)
    L0 = P0.compute_log_region_likelihood()
    Prior0 = P0.compute_log_prior()
    Post0 = P0.compute_log_posterior(nsimu=1e2, burnin=1e2, 
                                     verbose=verbose)
    M0 = L0 + Prior0[:-1] - Post0[:-1]
    yield assert_almost_equal(M0.mean(), 
                              P0.compute_marginal_likelihood().mean(), 0)
    yield assert_true(M1[1] > M0[1])
    yield assert_true(M1[0] < M0[0])
开发者ID:cindeem,项目名称:nipy,代码行数:28,代码来源:test_spatial_relaxation_onesample.py

示例5: test_agreement

def test_agreement():
    # The test: does Protocol manage to recreate the design of fMRIstat?
    for design_type in ['event', 'block']:
        dd = D[design_type]
        for i in range(X[design_type].shape[1]):
            _, cmax = matchcol(X[design_type][:,i], fmristat[design_type])
            if not dd.dtype.names[i].startswith('ns'):
                assert_true(np.greater(np.abs(cmax), 0.999))
开发者ID:FNNDSC,项目名称:nipy,代码行数:8,代码来源:test_FIAC.py

示例6: test_threshold_connect_components

def test_threshold_connect_components():
    a = np.zeros((10, 10))
    a[0, 0] = 1
    a[3, 4] = 1
    a = threshold_connect_components(a, 2)
    assert_true(np.all(a == 0))
    a[0, 0:3] = 1
    b = threshold_connect_components(a, 2)
    assert_true(np.all(a == b))
开发者ID:Lx37,项目名称:nipy,代码行数:9,代码来源:test_mask.py

示例7: test_image_list

def test_image_list():
    img = load_image(funcfile)
    exp_shape = (17, 21, 3, 20)
    imglst = ImageList.from_image(img, axis=-1)
    
    # Test empty ImageList
    emplst = ImageList()
    yield assert_equal(len(emplst.list), 0)

    # Test non-image construction
    a = np.arange(10)
    yield assert_raises(ValueError, ImageList, a)
    yield assert_raises(ValueError, ImageList.from_image, img, None)

    # check all the axes
    for i in range(4):
        order = range(4)
        order.remove(i)
        order.insert(0,i)
        img_re_i = img.reordered_reference(order).reordered_axes(order)
        imglst_i = ImageList.from_image(img, axis=i)

        yield assert_equal(imglst_i.list[0].shape, img_re_i.shape[1:])
        
        # check the affine as well

        yield assert_almost_equal(imglst_i.list[0].affine, 
                                  img_re_i.affine[1:,1:])

    yield assert_equal(img.shape, exp_shape)

    # length of image list should match number of frames
    yield assert_equal(len(imglst.list), img.shape[3])

    # check the affine
    A = np.identity(4)
    A[:3,:3] = img.affine[:3,:3]
    A[:3,-1] = img.affine[:3,-1]
    yield assert_almost_equal(imglst.list[0].affine, A)

    # Slicing an ImageList should return an ImageList
    sublist = imglst[2:5]
    yield assert_true(isinstance(sublist, ImageList))
    # Except when we're indexing one element
    yield assert_true(isinstance(imglst[0], Image))
    # Verify array interface
    # test __array__
    yield assert_true(isinstance(np.asarray(sublist), np.ndarray))
    # Test __setitem__
    sublist[2] = sublist[0]
    yield assert_equal(np.asarray(sublist[0]).mean(),
                       np.asarray(sublist[2]).mean())
    # Test iterator
    for x in sublist:
        yield assert_true(isinstance(x, Image))
        yield assert_equal(x.shape, exp_shape[:3])
开发者ID:Garyfallidis,项目名称:nipy,代码行数:56,代码来源:test_image_list.py

示例8: test_same_basis

def test_same_basis():
    arr4d = data['fmridata']
    shp = arr4d.shape
    arr2d =  arr4d.reshape((np.prod(shp[:3]), shp[3]))
    res = pca(arr2d, axis=-1)
    p1b_0 = pos1basis(res)
    for i in range(3):
        res_again = pca(arr2d, axis=-1)
        assert_true(np.all(pos1basis(res_again) ==
                           p1b_0))
开发者ID:Garyfallidis,项目名称:nipy,代码行数:10,代码来源:test_pca.py

示例9: test_kernel

def test_kernel():
    # Verify that convolution with a delta function gives the correct
    # answer.
    tol = 0.9999
    sdtol = 1.0e-8
    for x in range(6):
        shape = randint(30,60,(3,))
        # pos of delta
        ii, jj, kk = randint(11,17, (3,))
        # random affine coordmap (diagonal and translations)
        coordmap = AffineTransform.from_start_step('ijk', 'xyz', 
                                          randint(5,20,(3,))*0.25,
                                          randint(5,10,(3,))*0.5)
        # delta function in 3D array
        signal = np.zeros(shape)
        signal[ii,jj,kk] = 1.
        signal = Image(signal, coordmap=coordmap)
        # A filter with coordmap, shape matched to image
        kernel = LinearFilter(coordmap, shape, 
                              fwhm=randint(50,100)/10.)
        # smoothed normalized 3D array
        ssignal = kernel.smooth(signal).get_data()
        ssignal[:] *= kernel.norms[kernel.normalization]
        # 3 points * signal.size array
        I = np.indices(ssignal.shape)
        I.shape = (kernel.coordmap.ndims[0], np.product(shape))
        # location of maximum in smoothed array
        i, j, k = I[:, np.argmax(ssignal[:].flat)]
        # same place as we put it before smoothing?
        assert_equal((i,j,k), (ii,jj,kk))
        # get physical points position relative to position of delta
        Z = kernel.coordmap(I.T) - kernel.coordmap([i,j,k])
        _k = kernel(Z)
        _k.shape = ssignal.shape
        assert_true((np.corrcoef(_k[:].flat, ssignal[:].flat)[0,1] > tol))
        assert_true(((_k[:] - ssignal[:]).std() < sdtol))

        def _indices(i,j,k,axis):
            I = np.zeros((3,20))
            I[0] += i
            I[1] += j
            I[2] += k
            I[axis] += np.arange(-10,10)
            return I.T

        vx = ssignal[i,j,(k-10):(k+10)]
        xformed_ijk = coordmap([i, j, k])
        vvx = coordmap(_indices(i,j,k,2)) - xformed_ijk
        assert_true((np.corrcoef(vx, kernel(vvx))[0,1] > tol))
        vy = ssignal[i,(j-10):(j+10),k]
        vvy = coordmap(_indices(i,j,k,1)) - xformed_ijk
        assert_true((np.corrcoef(vy, kernel(vvy))[0,1] > tol))
        vz = ssignal[(i-10):(i+10),j,k]
        vvz = coordmap(_indices(i,j,k,0)) - xformed_ijk
        assert_true((np.corrcoef(vz, kernel(vvz))[0,1] > tol))
开发者ID:FNNDSC,项目名称:nipy,代码行数:55,代码来源:test_kernel_smooth.py

示例10: test_resid

def test_resid():
    # Data is projected onto k=10 dimensional subspace then has its mean
    # removed.  Should still have rank 10.
    k = 10
    ncomp = 5
    ntotal = k
    X = np.random.standard_normal((data['nimages'], k))
    p = pca(data['fmridata'], -1, ncomp=ncomp, design_resid=X)
    assert_equal(p['basis_vectors'].shape, (data['nimages'], ntotal))
    assert_equal(p['basis_projections'].shape, data['mask'].shape + (ncomp,))
    assert_equal(p['pcnt_var'].shape, (ntotal,))
    assert_almost_equal(p['pcnt_var'].sum(), 100.)
    # if design_resid is None, we do not remove the mean, and we get
    # full rank from our data
    p = pca(data['fmridata'], -1, design_resid=None)
    rank = p['basis_vectors'].shape[1]
    assert_equal(rank, data['nimages'])
    rarr = reconstruct(p['basis_vectors'], p['basis_projections'], -1)
    # add back the sqrt MSE, because we standardized
    rmse = root_mse(data['fmridata'], axis=-1)[...,None]
    assert_true(np.allclose(rarr * rmse, data['fmridata']))
开发者ID:GaelVaroquaux,项目名称:nipy,代码行数:21,代码来源:test_pca.py

示例11: test_mask

def test_mask():
    mean_image = np.ones((9, 9))
    mean_image[3:-3, 3:-3] = 10
    mean_image[5, 5] = 100
    mask1 = nnm.compute_mask(mean_image)
    mask2 = nnm.compute_mask(mean_image, exclude_zeros=True)
    # With an array with no zeros, exclude_zeros should not make
    # any difference
    assert_array_equal(mask1, mask2)
    # Check that padding with zeros does not change the extracted mask
    mean_image2 = np.zeros((30, 30))
    mean_image2[:9, :9] = mean_image
    mask3 = nnm.compute_mask(mean_image2, exclude_zeros=True)
    assert_array_equal(mask1, mask3[:9, :9])
    # However, without exclude_zeros, it does
    mask3 = nnm.compute_mask(mean_image2)
    assert_false(np.allclose(mask1, mask3[:9, :9]))
    # check that  opening is 2 by default
    mask4 = nnm.compute_mask(mean_image, exclude_zeros=True, opening=2)
    assert_array_equal(mask1, mask4)
    # check that opening has an effect
    mask5 = nnm.compute_mask(mean_image, exclude_zeros=True, opening=0)
    assert_true(mask5.sum() > mask4.sum())
开发者ID:Lx37,项目名称:nipy,代码行数:23,代码来源:test_mask.py

示例12: test_2D

def test_2D():
    # check that a standard 2D PCA works too
    M = 100
    N = 20
    L = M-1 # rank after mean removal
    data = np.random.uniform(size=(M, N))
    p = pca(data)
    ts = p['basis_vectors']
    imgs = p['basis_projections']
    yield assert_equal(ts.shape, (M, L))
    yield assert_equal(imgs.shape, (L, N))
    rimgs = reconstruct(ts, imgs)
    # add back the sqrt MSE, because we standardized
    data_mean = data.mean(0)[None,...]
    demeaned = data - data_mean
    rmse = root_mse(demeaned, axis=0)[None,...]
    # also add back the mean
    yield assert_array_almost_equal((rimgs * rmse) + data_mean, data)
    # if standardize is set, or not, covariance is diagonal
    yield assert_true(diagonal_covariance(imgs))
    p = pca(data, standardize=False)
    imgs = p['basis_projections']
    yield assert_true(diagonal_covariance(imgs))
开发者ID:Garyfallidis,项目名称:nipy,代码行数:23,代码来源:test_pca.py

示例13: test_call

def test_call():
    value = 10
    yield assert_true(np.allclose(E.a(value), 2*value))
    yield assert_true(np.allclose(E.b(value), 2*value))
    # FIXME: this shape just below is not
    # really expected for a CoordinateMap
    yield assert_true(np.allclose(E.b([value]), 2*value))
    yield assert_true(np.allclose(E.c(value), value/2))
    yield assert_true(np.allclose(E.d(value), value/2))
    value = np.array([1., 2., 3.])
    yield assert_true(np.allclose(E.e(value), value))
    # check that error raised for wrong shape
    value = np.array([1., 2.,])
    yield assert_raises(CoordinateSystemError, E.e, value)
开发者ID:Garyfallidis,项目名称:nipy,代码行数:14,代码来源:test_coordinate_map.py

示例14: test_inverse2

def test_inverse2():
    assert_true(np.allclose(E.e.affine, E.e.inverse().inverse().affine))
开发者ID:Garyfallidis,项目名称:nipy,代码行数:2,代码来源:test_coordinate_map.py

示例15: test_compose_cmap

def test_compose_cmap():
    value = np.array([1., 2., 3.])
    b = compose(E.e, E.e)
    assert_true(np.allclose(b(value), value))
开发者ID:Garyfallidis,项目名称:nipy,代码行数:4,代码来源:test_coordinate_map.py


注:本文中的nipy.testing.assert_true函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。