当前位置: 首页>>代码示例>>Python>>正文


Python plotting.plot_anat函数代码示例

本文整理汇总了Python中nilearn.plotting.plot_anat函数的典型用法代码示例。如果您正苦于以下问题:Python plot_anat函数的具体用法?Python plot_anat怎么用?Python plot_anat使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了plot_anat函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: plot_segmentation

def plot_segmentation(anat_file, segmentation, out_file,
                      **kwargs):
    from nilearn.plotting import plot_anat

    vmax = None
    if kwargs.get('saturate', False):
        import nibabel as nb
        import numpy as np
        vmax = np.percentile(nb.load(anat_file).get_data().reshape(-1),
                             70)

    disp = plot_anat(
        anat_file,
        display_mode=kwargs.get('display_mode', 'ortho'),
        cut_coords=kwargs.get('cut_coords', 8),
        title=kwargs.get('title'),
        vmax=vmax)
    disp.add_contours(
        segmentation,
        levels=kwargs.get('levels', [1]),
        colors=kwargs.get('colors', 'r'))
    disp.savefig(out_file)
    disp.close()
    disp = None
    return out_file
开发者ID:poldracklab,项目名称:mriqc,代码行数:25,代码来源:viz_utils.py

示例2: plot_segmentation

def plot_segmentation(anat_file, segmentation, out_file,
                      **kwargs):
    from nilearn.plotting import plot_anat

    vmax = kwargs.get('vmax')
    vmin = kwargs.get('vmin')

    if kwargs.get('saturate', False):
        vmax = np.percentile(nb.load(anat_file).get_data().reshape(-1), 70)

    if vmax is None and vmin is None:

        vmin = np.percentile(nb.load(anat_file).get_data().reshape(-1), 10)
        vmax = np.percentile(nb.load(anat_file).get_data().reshape(-1), 99)

    disp = plot_anat(
        anat_file,
        display_mode=kwargs.get('display_mode', 'ortho'),
        cut_coords=kwargs.get('cut_coords', 8),
        title=kwargs.get('title'),
        vmax=vmax, vmin=vmin)
    disp.add_contours(
        segmentation,
        levels=kwargs.get('levels', [1]),
        colors=kwargs.get('colors', 'r'))
    disp.savefig(out_file)
    disp.close()
    disp = None
    return out_file
开发者ID:oesteban,项目名称:mriqc,代码行数:29,代码来源:utils.py

示例3: plot_artifact

def plot_artifact(image_path, figsize=(20, 20), vmax=None, cut_coords=None, display_mode='ortho',
                  size=None):
    import nilearn.plotting as nplt

    fig = plt.figure(figsize=figsize)
    nplt_disp = nplt.plot_anat(
        image_path, display_mode=display_mode, cut_coords=cut_coords,
        vmax=vmax, figure=fig, annotate=False)

    if size is None:
        size = figsize[0] * 6


    bg_color = 'k'
    fg_color = 'w'
    ax = fig.gca()
    ax.text(
        .1, .95, 'L',
        transform=ax.transAxes,
        horizontalalignment='left',
        verticalalignment='top',
        size=size,
        bbox=dict(boxstyle="square,pad=0", ec=bg_color, fc=bg_color, alpha=1),
        color=fg_color)

    ax.text(
        .9, .95, 'R',
        transform=ax.transAxes,
        horizontalalignment='right',
        verticalalignment='top',
        size=size,
        bbox=dict(boxstyle="square,pad=0", ec=bg_color, fc=bg_color),
        color=fg_color)

    return nplt_disp, ax
开发者ID:yingqiuz,项目名称:mriqc,代码行数:35,代码来源:misc.py

示例4: _plot_anat_with_contours

def _plot_anat_with_contours(image, segs=None, compress='auto',
                             **plot_params):
    nsegs = len(segs or [])
    plot_params = plot_params or {}
    # plot_params' values can be None, however they MUST NOT
    # be None for colors and levels from this point on.
    colors = plot_params.pop('colors', None) or []
    levels = plot_params.pop('levels', None) or []
    missing = nsegs - len(colors)
    if missing > 0:  # missing may be negative
        colors = colors + color_palette("husl", missing)

    colors = [[c] if not isinstance(c, list) else c
              for c in colors]

    if not levels:
        levels = [[0.5]] * nsegs

    # anatomical
    display = plot_anat(image, **plot_params)

    # remove plot_anat -specific parameters
    plot_params.pop('display_mode')
    plot_params.pop('cut_coords')

    plot_params['linewidths'] = 0.5
    for i in reversed(range(nsegs)):
        plot_params['colors'] = colors[i]
        display.add_contours(segs[i], levels=levels[i],
                             **plot_params)

    svg = extract_svg(display, compress=compress)
    display.close()
    return svg
开发者ID:poldracklab,项目名称:niworkflows,代码行数:34,代码来源:utils.py

示例5: _run_interface

	def _run_interface(self, runtime):
		import matplotlib
		matplotlib.use('Agg')
		import nibabel as nib
		from nilearn import plotting, datasets, image
		from nipype.interfaces.base import isdefined
		import numpy as np
		import pylab as plt
		import os

		wra_img = nib.load(self.inputs.wra_img)
		canonical_img = nib.load(self.inputs.canonical_img)
		title = self.inputs.title
		mean_wraimg = image.mean_img(wra_img)

		if title != "":
			filename = title.replace(" ", "_")+".pdf"
		else:
			filename = "plot.pdf"

		fig = plotting.plot_anat(mean_wraimg, title="wrafunc & canonical single subject", cut_coords=range(-40, 40, 10), display_mode='z')
		fig.add_edges(canonical_img)     
		fig.savefig(filename)
		fig.close()

		self._plot = filename

		runtime.returncode=0
		return runtime
开发者ID:GordonMatthewson,项目名称:CosanlabToolbox,代码行数:29,代码来源:Nipype_SPM_Preproc.py

示例6: check_mask_coverage

def check_mask_coverage(epi,brainmask):
    from os.path import abspath
    from nipype import config, logging
    config.enable_debug_mode()
    logging.update_logging(config)
    from nilearn import plotting
    from nipype.interfaces.nipy.preprocess import Trim

    trim = Trim()
    trim.inputs.in_file = epi
    trim.inputs.end_index = 1
    trim.inputs.out_file = 'epi_vol1.nii.gz'
    trim.run()
    epi_vol = abspath('epi_vol1.nii.gz')

    maskcheck_filename='maskcheck.png'
    display = plotting.plot_anat(epi_vol, display_mode='ortho',
                                 draw_cross=False,
                                 title = 'brainmask coverage')
    display.add_contours(brainmask,levels=[.5], colors='r')
    display.savefig(maskcheck_filename)
    display.close()
    maskcheck_file = abspath(maskcheck_filename)

    return(maskcheck_file)
开发者ID:catcamacho,项目名称:infant_rest,代码行数:25,代码来源:preprocessing_classic.py

示例7: _run_interface

    def _run_interface(self, runtime):
        import matplotlib

        matplotlib.use("Agg")
        import pylab as plt

        wra_img = nib.load(self.inputs.wra_img)
        canonical_img = nib.load(self.inputs.canonical_img)
        title = self.inputs.title
        mean_wraimg = image.mean_img(wra_img)

        if title != "":
            filename = title.replace(" ", "_") + ".pdf"
        else:
            filename = "plot.pdf"

        fig = plotting.plot_anat(
            mean_wraimg, title="wrafunc & canonical single subject", cut_coords=range(-40, 40, 10), display_mode="z"
        )
        fig.add_edges(canonical_img)
        fig.savefig(filename)
        fig.close()

        self._plot = filename

        runtime.returncode = 0
        return runtime
开发者ID:burnash,项目名称:neurolearn,代码行数:27,代码来源:interfaces.py

示例8: make_anat_image

def make_anat_image(nifti_file,png_img_file=None):
    """Make anat image"""

    nifti_file = str(nifti_file)
    brain = plot_anat(nifti_file)
    if png_img_file:    
        brain.savefig(png_img_file)
    plt.close('all')
    return brain
开发者ID:vsoch,项目名称:pybraincompare,代码行数:9,代码来源:image.py

示例9: anatomical_overlay

def anatomical_overlay(in_file, overlay_file, out_file):
    import os.path
    import matplotlib as mpl
    mpl.use('Agg')
    from nilearn.plotting import plot_anat as plot_anat
    mask_display = plot_anat(in_file)
    mask_display.add_edges(overlay_file)
    mask_display.dim = -1
    #  mask_display.add_contours(overlay_file)
    #  mask_display.add_overlay(overlay_file)
    mask_display.title(out_file, x=0.01, y=0.99, size=15, color=None,
                       bgcolor=None, alpha=1)
    mask_display.savefig(out_file)
    return os.path.abspath(out_file)
开发者ID:shoshber,项目名称:preprocessing-workflow,代码行数:14,代码来源:pipeline_reports.py

示例10: plot_image

def plot_image(input_files, output_directory, edge_file=None,
               overlay_file=None,
               contour_file=None, name=None, overlay_cmap=None):
    """ Plot image with edge/overlay/contour on top (useful for checking
    registration).

    <unit>
        <input name="input_files" type="['List_File', 'File']" desc="An image
            or a list of image to be displayed."/>
        <input name="output_directory" type="Directory" description="The
            destination folder."/>
        <input name="edge_file" type="File" description="The target image
            to extract the edges from."/>
        <input name="overlay_file" type="File" description="The target image
            to extract the overlay from."/>
        <input name="contour_file" type="File" description="The target image
            to extract the contour from."/>
        <input name="name" type="Str" description="The name of the plot."/>
        <input name="overlay_cmap" type="Str" description="The color map to
            use: 'cold_hot' or 'blue_red' or None."/>
        <output name="snap_file" type="File" description="A pdf snap of the
            image."/>
    </unit>
    """
    input_file = input_files[0]
    # Check the input images exist on the file system
    for in_file in [input_file, edge_file, overlay_file, contour_file]:
        if in_file is not None and not os.path.isfile(in_file):
            raise ValueError("'{0}' is not a valid filename.".format(in_file))

    # Create the 'snap_file' location
    snap_file = os.path.join(
        output_directory, os.path.basename(input_file).split(".")[0] + ".pdf")

    # Create the plot
    display = plotting.plot_anat(input_file, title=name or "")
    if edge_file is not None:
        display.add_edges(edge_file)
    if overlay_file is not None:
        cmap = plotting.cm.__dict__.get(
            overlay_cmap, plotting.cm.alpha_cmap((1, 1, 0)))
        display.add_overlay(overlay_file, cmap=cmap)
    if contour_file is not None:
        display.add_contours(contour_file, alpha=0.6, filled=True,
                             linestyles="solid")
    display.savefig(snap_file)
    display.close()

    return snap_file
开发者ID:neurospin,项目名称:caps-mmutils,代码行数:49,代码来源:slicer.py

示例11: create_coreg_plot

def create_coreg_plot(epi,anat):
    import os
    from nipype import config, logging
    config.enable_debug_mode()
    logging.update_logging(config)
    from nilearn import plotting

    coreg_filename='coregistration.png'
    display = plotting.plot_anat(epi, display_mode='ortho',
                                 draw_cross=False,
                                 title = 'coregistration to anatomy')
    display.add_edges(anat)
    display.savefig(coreg_filename)
    display.close()
    coreg_file = os.path.abspath(coreg_filename)

    return(coreg_file)
开发者ID:catcamacho,项目名称:infant_rest,代码行数:17,代码来源:preprocessing_classic.py

示例12: edges_overlay

def edges_overlay(input_file, template_file, prefix="e", output_directory=None):
    """ Plot image outline on top of another image (useful for checking
    registration)

    <unit>
        <input name="input_file" type="File" desc="An image to display."/>
        <input name="template_file" type="File" desc="The target image to
            extract the edges from."/>
        <input name="prefix" type="String" desc="the prefix of the result
            file."/>
        <input name="output_directory" type="Directory" desc="The destination
            folder." optional="True"/>
        <output name="edges_file" type="File" desc="A snap with two overlayed
            images."/>
    </unit>
    """
    # Check the input images exist on the file system
    for in_file in [input_file, template_file]:
        if not os.path.isfile(in_file):
            raise ValueError("'{0}' is not a valid filename.".format(in_file))

    # Check that the outdir is valid
    if output_directory is not None:
        if not os.path.isdir(output_directory):
            raise ValueError("'{0}' is not a valid directory.".format(output_directory))
    else:
        output_directory = os.path.dirname(input_file)

    # Create the plot
    display = plotting.plot_anat(input_file, title="Overlay")
    display.add_edges(template_file)
    edges_file = os.path.join(output_directory, prefix + os.path.basename(input_file).split(".")[0] + ".pdf")
    display.savefig(edges_file)
    display.close()

    return edges_file
开发者ID:rcherbonnier,项目名称:caps-clinfmri,代码行数:36,代码来源:image_overlay.py

示例13: print

# is a 'nibabel' object. It has data, and an affine
anat_data = smooth_anat_img.get_data()
print('anat_data has shape: %s' % str(anat_data.shape))
anat_affine = smooth_anat_img.get_affine()
print('anat_affineaffine:\n%s' % anat_affine)

# Finally, it can be passed to nilearn function
smooth_anat_img = image.smooth_img(smooth_anat_img, 3)

#########################################################################
# Visualization
from nilearn import plotting
cut_coords = (0, 0, 0)

# Like all functions in nilearn, plotting can be given filenames
plotting.plot_anat(anat_filename, cut_coords=cut_coords,
                   title='Anatomy image')

# Or nibabel objects
plotting.plot_anat(smooth_anat_img,
                   cut_coords=cut_coords,
                   title='Smoothed anatomy image')

#########################################################################
# Saving image to file
smooth_anat_img.to_filename('smooth_anat_img.nii.gz')

#########################################################################
# Finally, showing plots when used inside a terminal
plotting.show()
开发者ID:GaelVaroquaux,项目名称:nilearn,代码行数:30,代码来源:plot_nilearn_101.py

示例14: Structure

#
# .. note:: In this tutorial, we load the data using a data downloading
#           function. To input your own data, you will need to provide
#           a list of paths to your own files in the ``subject_data`` variable.
#           These should abide to the Brain Imaging Data Structure (BIDS) 
#           organization.

from nistats.datasets import fetch_spm_auditory
subject_data = fetch_spm_auditory()
print(subject_data.func)  # print the list of names of functional images

###############################################################################
# We can display the first functional image and the subject's anatomy:
from nilearn.plotting import plot_stat_map, plot_anat, plot_img, show
plot_img(subject_data.func[0])
plot_anat(subject_data.anat)

###############################################################################
# Next, we concatenate all the 3D EPI image into a single 4D image,
# then we average them in order to create a background
# image that will be used to display the activations:

from nilearn.image import concat_imgs, mean_img
fmri_img = concat_imgs(subject_data.func)
mean_img = mean_img(fmri_img)

###############################################################################
# Specifying the experimental paradigm
# ------------------------------------
#
# We must now provide a description of the experiment, that is, define the
开发者ID:alpinho,项目名称:nistats,代码行数:31,代码来源:plot_single_subject_single_run.py

示例15: coord_transform

# Build the mean image because we have no anatomic data
from nilearn import image
func_filename = haxby_dataset.func[0]
mean_img = image.mean_img(func_filename)

z_slice = -24
from nilearn.image.resampling import coord_transform
affine = mean_img.get_affine()
_, _, k_slice = coord_transform(0, 0, z_slice,
                                linalg.inv(affine))
k_slice = round(k_slice)

fig = plt.figure(figsize=(4, 5.4), facecolor='k')

from nilearn.plotting import plot_anat
display = plot_anat(mean_img, display_mode='z', cut_coords=[z_slice],
                    figure=fig)
mask_vt_filename = haxby_dataset.mask_vt[0]
mask_house_filename = haxby_dataset.mask_house[0]
mask_face_filename = haxby_dataset.mask_face[0]
display.add_contours(mask_vt_filename, contours=1, antialiased=False,
                     linewidths=4., levels=[0], colors=['red'])
display.add_contours(mask_house_filename, contours=1, antialiased=False,
                     linewidths=4., levels=[0], colors=['blue'])
display.add_contours(mask_face_filename, contours=1, antialiased=False,
                     linewidths=4., levels=[0], colors=['limegreen'])

# We generate a legend using the trick described on
# http://matplotlib.sourceforge.net/users/legend_guide.httpml#using-proxy-artist
from matplotlib.patches import Rectangle
p_v = Rectangle((0, 0), 1, 1, fc="red")
p_h = Rectangle((0, 0), 1, 1, fc="blue")
开发者ID:andreas-koukorinis,项目名称:gaelvaroquaux.github.io,代码行数:32,代码来源:plot_haxby_masks.py


注:本文中的nilearn.plotting.plot_anat函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。