本文整理汇总了Python中neurosynth.base.dataset.Dataset.save方法的典型用法代码示例。如果您正苦于以下问题:Python Dataset.save方法的具体用法?Python Dataset.save怎么用?Python Dataset.save使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类neurosynth.base.dataset.Dataset
的用法示例。
在下文中一共展示了Dataset.save方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from neurosynth.base.dataset import Dataset [as 别名]
# 或者: from neurosynth.base.dataset.Dataset import save [as 别名]
def __init__(self, db, dataset=None, studies=None, features=None,
reset_db=False, reset_dataset=False, download_data=True):
"""
Initialize instance from a pickled Neurosynth Dataset instance or a
pair of study and analysis .txt files.
Args:
db: the SQLAlchemy database connection to use.
dataset: an optional filename of a pickled neurosynth Dataset
instance.
Note that the Dataset must contain the list of Mappables (i.e.,
save() must have been called with keep_mappables set to
True).
studies: name of file containing activation data. If passed, a new
Dataset instance will be constructed.
features: name of file containing feature data.
reset_db: if True, will drop and re-create all database tables
before adding new content. If False (default), will add content
incrementally.
reset_dataset: if True, will regenerate the pickled Neurosynth
dataset.
download_data: if True, ignores any existing files and downloads
the latest Neurosynth data files from GitHub.
"""
if (studies is not None and not os.path.exists(studies)) \
or settings.RESET_ASSETS:
print "WARNING: RESETTING ALL NEUROSYNTH ASSETS!"
self.reset_assets(download_data)
# Load or create Neurosynth Dataset instance
if dataset is None or reset_dataset or (isinstance(dataset, basestring) and not os.path.exists(dataset)):
print "\tInitializing a new Dataset..."
if (studies is None) or (features is None):
raise ValueError(
"To generate a new Dataset instance, both studies and "
"analyses must be provided.")
dataset = Dataset(studies)
dataset.add_features(features)
dataset.save(settings.PICKLE_DATABASE, keep_mappables=True)
else:
print "\tLoading existing Dataset..."
dataset = Dataset.load(dataset)
if features is not None:
dataset.add_features(features)
self.dataset = dataset
self.db = db
if reset_db:
print "WARNING: RESETTING DATABASE!!!"
self.reset_database()
示例2: _getdata
# 需要导入模块: from neurosynth.base.dataset import Dataset [as 别名]
# 或者: from neurosynth.base.dataset.Dataset import save [as 别名]
def _getdata():
"""Downloads data from neurosynth and returns it as a Dataset.
Also pickles the dataset for future use."""
LOG.warning("Downloading and processing Neurosynth database")
os.makedirs("data", exist_ok=True)
from neurosynth.base.dataset import download
download(path="data", unpack=True)
data = Dataset("data/database.txt")
data.add_features("data/features.txt")
data.save("data/dataset.pkl")
return data
示例3: Dataset
# 需要导入模块: from neurosynth.base.dataset import Dataset [as 别名]
# 或者: from neurosynth.base.dataset.Dataset import save [as 别名]
# <codecell>
# Create a new Dataset instance
dataset = Dataset('data/database.txt')
# Add some features
dataset.add_features('data/features.txt')
# <markdowncell>
# Because this takes a while, we'll save our Dataset object to disk. That way, the next time we want to use it, we won't have to sit through the whole creation operation again:
# <codecell>
dataset.save('dataset.pkl')
# <markdowncell>
# Now in future, instead of waiting, we could just load the dataset from file:
# <codecell>
dataset = Dataset.load('dataset.pkl') # Note the capital D in the second Dataset--load() is a class method
# <markdowncell>
# ## Doing stuff with Neurosynth
# Now that our Dataset has both activation data and some features, we're ready to start doing some analyses! By design, Neurosynth focuses on facilitating simple, fast, and modestly useful analyses. This means you probably won't break any new ground using Neurosynth, but you should be able to supplement results you've generated using other approaches with a bunch of nifty analyses that take just 2 - 3 lines of code.
#
# ### Simple feature-based meta-analyses
示例4: create_dataset
# 需要导入模块: from neurosynth.base.dataset import Dataset [as 别名]
# 或者: from neurosynth.base.dataset.Dataset import save [as 别名]
def create_dataset(database_location, feature_location):
dataset = Dataset(database_location)
dataset.add_features(feature_location)
dataset.save('neurosynth-dataset.pkl')
return dataset
示例5: create_dataset
# 需要导入模块: from neurosynth.base.dataset import Dataset [as 别名]
# 或者: from neurosynth.base.dataset.Dataset import save [as 别名]
def create_dataset(database_location, feature_location):
dataset = Dataset(database_location)
dataset.add_features(feature_location)
dataset.save('dataset-old.pkl')
print 'created dataset'
return dataset
示例6: cluster2masks
# 需要导入模块: from neurosynth.base.dataset import Dataset [as 别名]
# 或者: from neurosynth.base.dataset.Dataset import save [as 别名]
xfm2vol.inputs.identity = 'fsaverage4'
xfm2vol.inputs.hemi = 'lh'
xfm2vol.inputs.transformed_file = volume_file
xfm2vol.inputs.template_file = template
xfm2vol.run()
#make masks to input into neurosynth
def cluster2masks(clusterfile):
clustermap = nb.load(clusterfile).get_data()
for x in range(1,clustermap.max()+1):
clustermask = (clustermap==x).astype(int)
nImg = nb.Nifti1Image(clustermask, None)
nb.save(nImg, os.path.abspath(clusterfile+'_clustermask'+str(x)+'.nii'))
cluster2masks(volume_file)
dataset_file = '/home/raid3/watanabe/neurosynth/data/dataset.pkl'
if not os.path.exists(dataset_file):
dataset = Dataset('/home/raid3/watanabe/neurosynth/data/database.txt')
dataset.add_features('/home/raid3/watanabe/neurosynth/data/features.txt')
dataset.save(dataset_file)
else:
dataset = cPickle.load(open(dataset_file,'rb'))
clustermask = volume_file+'_clustermask'+str(3)+'.nii'
ids = dataset.get_ids_by_mask(clustermask)
features = dataset.feature_table.get_features_by_ids(ids)
#mri_surf2vol --identity fsaverage4 --surfval /scr/ilz1/Data/attemptsurface.nii --hemi 'lh' --o /scr/ilz1/Data/results/surf2volume.nii --template /scr/ilz1/Data/freesurfer/fsaverage4/mri/orig.mgz