本文整理汇总了Python中neurom.load_neuron函数的典型用法代码示例。如果您正苦于以下问题:Python load_neuron函数的具体用法?Python load_neuron怎么用?Python load_neuron使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了load_neuron函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_translate_fst_neuron_h5
def test_translate_fst_neuron_h5():
t = np.array([100.,100.,100.])
nrn = load_neuron(H5_NRN_PATH)
tnrn = gtr.translate(nrn, t)
_check_fst_nrn_translate(nrn, tnrn, t)
示例2: test_translate_fst_neurite_h5
def test_translate_fst_neurite_h5():
t = np.array([100.,100.,100.])
nrn = load_neuron(H5_NRN_PATH)
nrt_a = nrn.neurites[0]
nrt_b = gtr.translate(nrt_a, t)
_check_fst_neurite_translate(nrt_a, nrt_b, t)
示例3: view
def view(input_file, plane, backend):
'''A simple neuron viewer'''
if backend == 'matplotlib':
from neurom.viewer import draw
kwargs = {
'mode': '3d' if plane == '3d' else '2d',
}
if plane != '3d':
kwargs['plane'] = plane
draw(load_neuron(input_file), **kwargs)
else:
from neurom.view.plotly import draw
draw(load_neuron(input_file), plane=plane)
if backend == 'matplotlib':
import matplotlib.pyplot as plt
plt.show()
示例4: test_terminal_length_per_neurite
def test_terminal_length_per_neurite():
nrn = nm.load_neuron(os.path.join(SWC_PATH, 'simple.swc'))
terminal_distances = np.array(_nf.terminal_path_lengths_per_neurite(nrn))
np.testing.assert_allclose(terminal_distances,
np.array([5 + 5., 5 + 6., 4. + 6., 4. + 5]))
terminal_distances = np.array(_nf.terminal_path_lengths_per_neurite(
nrn, neurite_type=nm.AXON))
np.testing.assert_allclose(terminal_distances,
np.array([4. + 6., 4. + 5.]))
示例5: setUp
def setUp(self):
self.ref_nrn = 'swc'
self.sec_nrn = nm.load_neuron(os.path.join(SWC_DATA_PATH, SWC_MORPH_FILENAME))
self.sec_nrn_trees = [n.root_node for n in self.sec_nrn.neurites]
self.ref_types = [NeuriteType.axon,
NeuriteType.basal_dendrite,
NeuriteType.basal_dendrite,
NeuriteType.apical_dendrite,
]
示例6: test_get_nonmonotonic_neurites
def test_get_nonmonotonic_neurites():
n = load_neuron(os.path.join(SWC_PATH, 'Neuron.swc'))
nt.assert_equal(len(mt.get_nonmonotonic_neurites(n)), 4)
_make_monotonic(n)
nt.assert_equal(len(mt.get_nonmonotonic_neurites(n)), 0)
示例7: test_principal_direction_extents
def test_principal_direction_extents():
# test with a realistic neuron
nrn = nm.load_neuron(os.path.join(H5_PATH, 'bio_neuron-000.h5'))
p_ref = [1672.9694359427331, 142.43704397865031, 226.45895382204986,
415.50612748523838, 429.83008974193206, 165.95410536922873,
346.83281498399697]
p = _nf.principal_direction_extents(nrn)
_close(np.array(p), np.array(p_ref))
示例8: test_extract_stats_single_neuron
def test_extract_stats_single_neuron():
nrn = nm.load_neuron(os.path.join(DATA_PATH, 'Neuron.swc'))
res = ms.extract_stats(nrn, REF_CONFIG)
nt.eq_(res.keys(), REF_OUT.keys())
nt.assert_almost_equal(res['mean_soma_radius'], REF_OUT['mean_soma_radius'])
for k in ('all', 'axon', 'basal_dendrite', 'apical_dendrite'):
nt.eq_(res[k].keys(), REF_OUT[k].keys())
for kk in res[k].keys():
nt.assert_almost_equal(res[k][kk], REF_OUT[k][kk])
示例9: test_get_flat_neurites
def test_get_flat_neurites():
n = load_neuron(os.path.join(SWC_PATH, 'Neuron.swc'))
nt.assert_equal(len(mt.get_flat_neurites(n, 1e-6, method='tolerance')), 0)
nt.assert_equal(len(mt.get_flat_neurites(n, 0.1, method='ratio')), 0)
n = _make_flat(n)
nt.assert_equal(len(mt.get_flat_neurites(n, 1e-6, method='tolerance')), 4)
nt.assert_equal(len(mt.get_flat_neurites(n, 0.1, method='ratio')), 4)
示例10: test_extract_stats_single_neuron
def test_extract_stats_single_neuron():
nrn = nm.load_neuron(os.path.join(DATA_PATH, 'Neuron.swc'))
res = ms.extract_stats(nrn, REF_CONFIG)
nt.eq_(set(res.keys()), set(REF_OUT.keys()))
#Note: soma radius is calculated from the sphere that gives the area
# of the cylinders described in Neuron.swc
nt.assert_almost_equal(res['mean_soma_radius'], REF_OUT['mean_soma_radius'])
for k in ('all', 'axon', 'basal_dendrite', 'apical_dendrite'):
nt.eq_(set(res[k].keys()), set(REF_OUT[k].keys()))
for kk in res[k].keys():
nt.assert_almost_equal(res[k][kk], REF_OUT[k][kk])
示例11: test_section_radial_distances_endpoint
def test_section_radial_distances_endpoint():
ref_sec_rad_dist = nf.section_radial_distances(NEURON)
rad_dists = fst_get('section_radial_distances', NEURON)
nt.eq_(len(rad_dists), 84)
nt.ok_(np.all(rad_dists == ref_sec_rad_dist))
nrns = [nm.load_neuron(os.path.join(SWC_PATH, f)) for
f in ('point_soma_single_neurite.swc', 'point_soma_single_neurite2.swc')]
pop = Population(nrns)
rad_dist_nrns = [nm.get('section_radial_distances', nrn) for nrn in nrns]
rad_dist_pop = nm.get('section_radial_distances', pop)
assert_items_equal(rad_dist_pop, rad_dist_nrns)
示例12: test_segment_radial_distances_displaced_neurite
def test_segment_radial_distances_displaced_neurite():
nrns = [nm.load_neuron(os.path.join(SWC_PATH, f)) for
f in ('point_soma_single_neurite.swc', 'point_soma_single_neurite2.swc')]
pop = Population(nrns)
rad_dist_nrns = []
for nrn in nrns:
rad_dist_nrns.extend( nm.get('segment_radial_distances', nrn))
rad_dist_nrns = np.array(rad_dist_nrns)
rad_dist_pop = nm.get('segment_radial_distances', pop)
nt.ok_(np.alltrue(rad_dist_pop == rad_dist_nrns))
示例13: test_has_no_narrow_dendritic_section
def test_has_no_narrow_dendritic_section():
swc_content = StringIO(u"""
# index, type, x, y, z, radius, parent
1 1 0 0 0 10. -1
2 2 0 0 0 10. 1
3 2 0 50 0 10. 2
4 2 -5 51 0 10. 3
5 2 6 53 0 10. 3
6 3 0 0 0 5. 1 # start of the narrow section
7 3 0 -4 0 5. 6
8 3 6 -4 0 10. 7
9 3 -5 -4 0 10. 7
""")
nrn = load_neuron(swc_content, reader='swc')
res = nrn_chk.has_no_narrow_neurite_section(nrn,
dendrite_filter,
radius_threshold=5,
considered_section_min_length=0)
nt.ok_(res.status)
res = nrn_chk.has_no_narrow_neurite_section(nrn, dendrite_filter,
radius_threshold=7,
considered_section_min_length=0)
nt.ok_(not res.status)
swc_content = StringIO(u"""
# index, type, x, y, z, radius, parent
1 1 0 0 0 10. -1
2 2 0 0 0 5 1 # narrow soma
3 2 0 50 0 5 2
4 2 -5 51 0 5 3
5 2 6 53 0 5 3
6 3 0 0 0 5 1 # narrow axon
7 3 0 -4 0 10. 6
8 3 6 -4 0 10. 7
9 3 -5 -4 0 10. 7
""")
res = nrn_chk.has_no_narrow_neurite_section(nrn, dendrite_filter,
radius_threshold=5,
considered_section_min_length=0)
nt.ok_(res.status, 'Narrow soma or axons should not raise bad status when checking for narrow dendrites')
示例14: test_segment_radial_distances_origin
def test_segment_radial_distances_origin():
origin = (-100, -200, -300)
ref_segs = nf.segment_radial_distances(NEURON)
ref_segs_origin = nf.segment_radial_distances(NEURON, origin=origin)
rad_dists = fst_get('segment_radial_distances', NEURON)
rad_dists_origin = fst_get('segment_radial_distances', NEURON, origin=origin)
nt.ok_(np.all(rad_dists == ref_segs))
nt.ok_(np.all(rad_dists_origin == ref_segs_origin))
nt.ok_(np.all(rad_dists_origin != ref_segs))
nrns = [nm.load_neuron(os.path.join(SWC_PATH, f)) for
f in ('point_soma_single_neurite.swc', 'point_soma_single_neurite2.swc')]
pop = Population(nrns)
rad_dist_nrns = []
for nrn in nrns:
rad_dist_nrns.extend(nm.get('segment_radial_distances', nrn))
rad_dist_nrns = np.array(rad_dist_nrns)
rad_dist_pop = nm.get('segment_radial_distances', pop)
assert_allclose(rad_dist_nrns, rad_dist_pop)
示例15: random_color
import numpy as np
_path = os.path.dirname(os.path.abspath(__file__))
DATA_PATH = os.path.join(_path, '../test_data')
SWC_PATH = os.path.join(DATA_PATH, 'swc')
def random_color():
'''Random color generation'''
return np.random.rand(3, 1)
def plot_somas(somas):
'''Plot set of somas on same figure as spheres, each with different color'''
_, ax = common.get_figure(new_fig=True, subplot=111,
params={'projection': '3d', 'aspect': 'equal'})
for s in somas:
common.plot_sphere(ax, s.center, s.radius, color=random_color(), alpha=1)
plt.show()
if __name__ == '__main__':
# define set of files containing relevant neurons
file_nms = [os.path.join(SWC_PATH, file_nm) for file_nm in ['Soma_origin.swc',
'Soma_translated_1.swc',
'Soma_translated_2.swc']]
# load from file and plot
sms = [load_neuron(file_nm).soma for file_nm in file_nms]
plot_somas(sms)