本文整理汇总了Python中neurom.get函数的典型用法代码示例。如果您正苦于以下问题:Python get函数的具体用法?Python get怎么用?Python get使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了get函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: extract_stats
def extract_stats(neurons, config):
'''Extract stats from neurons'''
stats = defaultdict(dict)
for ns, modes in config['neurite'].items():
for n in config['neurite_type']:
n = _NEURITE_MAP[n]
for mode in modes:
stat_name = _stat_name(ns, mode)
stat = eval_stats(nm.get(ns, neurons, neurite_type=n), mode)
if stat is None or len(stat.shape) == 0:
stats[n.name][stat_name] = stat
else:
assert stat.shape in ((3, ), ), \
'Statistic must create a 1x3 result'
for i, suffix in enumerate('XYZ'):
compound_stat_name = stat_name + '_' + suffix
stats[n.name][compound_stat_name] = stat[i]
for ns, modes in config['neuron'].items():
for mode in modes:
stat_name = _stat_name(ns, mode)
stats[stat_name] = eval_stats(nm.get(ns, neurons), mode)
return stats
示例2: test_section_radial_distances_endpoint
def test_section_radial_distances_endpoint():
ref_sec_rad_dist = nf.section_radial_distances(NEURON)
rad_dists = fst_get('section_radial_distances', NEURON)
nt.eq_(len(rad_dists), 84)
nt.ok_(np.all(rad_dists == ref_sec_rad_dist))
nrns = [nm.load_neuron(os.path.join(SWC_PATH, f)) for
f in ('point_soma_single_neurite.swc', 'point_soma_single_neurite2.swc')]
pop = Population(nrns)
rad_dist_nrns = [nm.get('section_radial_distances', nrn) for nrn in nrns]
rad_dist_pop = nm.get('section_radial_distances', pop)
assert_items_equal(rad_dist_pop, rad_dist_nrns)
示例3: test_segment_radial_distances_displaced_neurite
def test_segment_radial_distances_displaced_neurite():
nrns = [nm.load_neuron(os.path.join(SWC_PATH, f)) for
f in ('point_soma_single_neurite.swc', 'point_soma_single_neurite2.swc')]
pop = Population(nrns)
rad_dist_nrns = []
for nrn in nrns:
rad_dist_nrns.extend( nm.get('segment_radial_distances', nrn))
rad_dist_nrns = np.array(rad_dist_nrns)
rad_dist_pop = nm.get('segment_radial_distances', pop)
nt.ok_(np.alltrue(rad_dist_pop == rad_dist_nrns))
示例4: histogram
def histogram(neuron, feature, ax, bins=15, normed=True, cumulative=False):
'''
Plot a histogram of the selected feature for the population of neurons.
Plots x-axis versus y-axis on a scatter|histogram|binned values plot.
Parameters :
neurons : neuron list
feature : str
The feature of interest.
bins : int
Number of bins for the histogram.
cumulative : bool
Sets cumulative histogram on.
ax : axes object
the axes in which the plot is taking place
'''
feature_values = nm.get(feature, neuron)
# generate histogram
ax.hist(feature_values, bins=bins, cumulative=cumulative, normed=normed)
示例5: extract_stats
def extract_stats(neurons, config):
'''Extract stats from neurons'''
stats = defaultdict(dict)
for ns, modes in config['neurite'].iteritems():
for n in config['neurite_type']:
n = _NEURITE_MAP[n]
for mode in modes:
stat_name = _stat_name(ns, mode)
stats[n.name][stat_name] = eval_stats(nm.get(ns, neurons, neurite_type=n), mode)
L.debug('Stat: %s, Neurite: %s, Type: %s',
stat_name, n, type(stats[n.name][stat_name]))
for ns, modes in config['neuron'].iteritems():
for mode in modes:
stat_name = _stat_name(ns, mode)
stats[stat_name] = eval_stats(nm.get(ns, neurons), mode)
return stats
示例6: load_neurite_features
def load_neurite_features(filepath):
"""Unpack relevant data into megadict"""
stuff = defaultdict(lambda: defaultdict(list))
nrns = nm.load_neurons(filepath)
# unpack data into arrays
for nrn in nrns:
for t in NEURITES_:
for feat in FEATURES:
stuff[feat][str(t).split(".")[1]].extend(nm.get(feat, nrn, neurite_type=t))
return stuff
示例7: extract_data
def extract_data(data_path, feature):
'''Loads a list of neurons, extracts feature
and transforms the fitted distribution in the correct format.
Returns the optimal distribution, corresponding parameters,
minimun and maximum values.
'''
population = nm.load_neurons(data_path)
feature_data = [nm.get(feature, n) for n in population]
feature_data = list(chain(*feature_data))
return stats.optimal_distribution(feature_data)
示例8: test_segment_radial_distances_origin
def test_segment_radial_distances_origin():
origin = (-100, -200, -300)
ref_segs = nf.segment_radial_distances(NEURON)
ref_segs_origin = nf.segment_radial_distances(NEURON, origin=origin)
rad_dists = fst_get('segment_radial_distances', NEURON)
rad_dists_origin = fst_get('segment_radial_distances', NEURON, origin=origin)
nt.ok_(np.all(rad_dists == ref_segs))
nt.ok_(np.all(rad_dists_origin == ref_segs_origin))
nt.ok_(np.all(rad_dists_origin != ref_segs))
nrns = [nm.load_neuron(os.path.join(SWC_PATH, f)) for
f in ('point_soma_single_neurite.swc', 'point_soma_single_neurite2.swc')]
pop = Population(nrns)
rad_dist_nrns = []
for nrn in nrns:
rad_dist_nrns.extend(nm.get('segment_radial_distances', nrn))
rad_dist_nrns = np.array(rad_dist_nrns)
rad_dist_pop = nm.get('segment_radial_distances', pop)
assert_allclose(rad_dist_nrns, rad_dist_pop)
示例9: test_load_neuron_mixed_tree_swc
def test_load_neuron_mixed_tree_swc():
nrn_mix = utils.load_neuron(os.path.join(SWC_ORD_PATH, 'sample_mixed_tree_sections.swc'))
nt.assert_items_equal(get('number_of_sections_per_neurite', nrn_mix), [5, 3])
nt.assert_items_equal(get('number_of_sections_per_neurite', nrn_mix),
get('number_of_sections_per_neurite', SWC_ORD_REF))
nt.assert_items_equal(get('number_of_segments', nrn_mix),
get('number_of_segments', SWC_ORD_REF))
nt.assert_items_equal(get('total_length', nrn_mix),
get('total_length', SWC_ORD_REF))
示例10: extract_data
def extract_data(neurons, feature, params=None):
'''Extracts feature from a list of neurons
and transforms the fitted distribution in the correct format.
Returns the optimal distribution and corresponding parameters.
Normal distribution params (mean, std)
Exponential distribution params (loc, scale)
Uniform distribution params (min, range)
'''
if params is None:
params = {}
feature_data = [get(FEATURE_MAP[feature], n, **params) for n in neurons]
feature_data = list(chain(*feature_data))
return stats.optimal_distribution(feature_data)
示例11: test_load_neuron_section_order_break_swc
def test_load_neuron_section_order_break_swc():
nrn_mix = utils.load_neuron(os.path.join(SWC_ORD_PATH, 'sample_disordered.swc'))
assert_items_equal(get('number_of_sections_per_neurite', nrn_mix), [5, 3])
assert_items_equal(get('number_of_sections_per_neurite', nrn_mix),
get('number_of_sections_per_neurite', SWC_ORD_REF))
assert_items_equal(get('number_of_segments', nrn_mix),
get('number_of_segments', SWC_ORD_REF))
assert_items_equal(get('total_length', nrn_mix),
get('total_length', SWC_ORD_REF))
示例12: test_multiple_distr
def test_multiple_distr(filepath):
'''Runs the distribution fit for multiple distributions and returns
the optimal distribution along with the corresponding parameters.
'''
# load a neuron from an SWC file
population = nm.load_neurons(filepath)
# Create a list of basic distributions
distr_to_check = ('norm', 'expon', 'uniform')
# Get the soma radii of a population of neurons
soma_size = nm.get('soma_radii', population)
# Find the best fit distribution
return st.optimal_distribution(soma_size, distr_to_check)
示例13: test_neuron_not_corrupted
def test_neuron_not_corrupted(self):
# Regression for #492: dendrogram was corrupting
# neuron used to construct it.
# This caused the section path distance calculation
# to raise a KeyError exception.
get('section_path_distances', NEURON)
示例14: time_number_of_sections_per_neurite
def time_number_of_sections_per_neurite(self):
nm.get('number_of_sections_per_neurite', self.neuron)
示例15: time_segment_taper_rates
def time_segment_taper_rates(self):
nm.get('segment_taper_rates', self.neuron)