本文整理汇总了Python中networkx.utils.pairwise函数的典型用法代码示例。如果您正苦于以下问题:Python pairwise函数的具体用法?Python pairwise怎么用?Python pairwise使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了pairwise函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: grid_2d_graph
def grid_2d_graph(m,n,periodic=False,create_using=None):
""" Return the 2d grid graph of mxn nodes,
each connected to its nearest neighbors.
Optional argument periodic=True will connect
boundary nodes via periodic boundary conditions.
"""
G=empty_graph(0,create_using)
row_name, rows = m
col_name, columns = n
G.name="grid_2d_graph(%s, %s)"%(row_name, col_name)
G.add_nodes_from( (i,j) for i in rows for j in columns )
G.add_edges_from( ((i,j),(pi,j)) for pi,i in pairwise(rows) for j in columns )
G.add_edges_from( ((i,j),(i,pj)) for i in rows for pj,j in pairwise(columns) )
if G.is_directed():
G.add_edges_from( ((pi,j),(i,j)) for pi,i in pairwise(rows) for j in columns )
G.add_edges_from( ((i,pj),(i,j)) for i in rows for pj,j in pairwise(columns) )
if periodic:
if len(columns)>2:
f = columns[0]
l = columns[-1]
G.add_edges_from( ((i,f),(i,l)) for i in rows )
if G.is_directed():
G.add_edges_from( ((i,l),(i,f)) for i in rows )
if len(rows)>2:
f = rows[0]
l = rows[-1]
G.add_edges_from( ((f,j),(l,j)) for j in columns )
if G.is_directed():
G.add_edges_from( ((l,j),(f,j)) for j in columns )
G.name="periodic_grid_2d_graph(%s,%s)"%(m,n)
return G
示例2: validate_path
def validate_path(G, s, t, soln_len, path):
assert_equal(path[0], s)
assert_equal(path[-1], t)
if not G.is_multigraph():
computed = sum(G[u][v].get('weight', 1) for u, v in pairwise(path))
assert_equal(soln_len, computed)
else:
computed = sum(min(e.get('weight', 1) for e in G[u][v].values())
for u, v in pairwise(path))
assert_equal(soln_len, computed)
示例3: grid_2d_graph
def grid_2d_graph(m, n, periodic=False, create_using=None):
"""Returns the two-dimensional grid graph.
The grid graph has each node connected to its four nearest neighbors.
Parameters
----------
m, n : int or iterable container of nodes
If an integer, nodes are from `range(n)`.
If a container, elements become the coordinate of the nodes.
periodic : bool (default: False)
If this is ``True`` the nodes on the grid boundaries are joined
to the corresponding nodes on the opposite grid boundaries.
create_using : NetworkX graph (default: Graph())
If provided this graph is cleared of nodes and edges and filled
with the new graph. Usually used to set the type of the graph.
Returns
-------
NetworkX graph
The (possibly periodic) grid graph of the specified dimensions.
"""
G = empty_graph(0, create_using)
row_name, rows = m
col_name, cols = n
G.add_nodes_from((i, j) for i in rows for j in cols)
G.add_edges_from(((i, j), (pi, j))
for pi, i in pairwise(rows) for j in cols)
G.add_edges_from(((i, j), (i, pj))
for i in rows for pj, j in pairwise(cols))
if periodic is True:
if len(rows) > 2:
first = rows[0]
last = rows[-1]
G.add_edges_from(((first, j), (last, j)) for j in cols)
if len(cols) > 2:
first = cols[0]
last = cols[-1]
G.add_edges_from(((i, first), (i, last)) for i in rows)
# both directions for directed
if G.is_directed():
G.add_edges_from((v, u) for u, v in G.edges())
# set name
G.name = "grid_2d_graph(%s, %s)" % (row_name, col_name)
if periodic is True:
G.name = "periodic_" + G.name
return G
示例4: dag_longest_path_length
def dag_longest_path_length(G, weight='weight', default_weight=1):
"""Returns the longest path length in a DAG
Parameters
----------
G : NetworkX DiGraph
A directed acyclic graph (DAG)
weight : string, optional
Edge data key to use for weight
default_weight : int, optional
The weight of edges that do not have a weight attribute
Returns
-------
int
Longest path length
Raises
------
NetworkXNotImplemented
If `G` is not directed
See also
--------
dag_longest_path
"""
path = nx.dag_longest_path(G, weight, default_weight)
path_length = 0
for (u, v) in pairwise(path):
path_length += G[u][v].get(weight, default_weight)
return path_length
示例5: test_unorderable_nodes
def test_unorderable_nodes(self):
"""Tests that computing the longest path does not depend on
nodes being orderable.
For more information, see issue #1989.
"""
# TODO In Python 3, instances of the `object` class are
# unorderable by default, so we wouldn't need to define our own
# class here, we could just instantiate an instance of the
# `object` class. However, we still support Python 2; when
# support for Python 2 is dropped, this test can be simplified
# by replacing `Unorderable()` by `object()`.
class Unorderable(object):
def __le__(self):
raise NotImplemented
def __ge__(self):
raise NotImplemented
# Create the directed path graph on four nodes, with nodes
# represented as (unorderable) Python objects.
nodes = [Unorderable() for n in range(4)]
G = nx.DiGraph()
G.add_edges_from(pairwise(nodes))
path = list(nx.dag_longest_path(G))
assert_equal(path, nodes)
示例6: add_cycle
def add_cycle(G_to_add_to, nodes_for_cycle, **attr):
"""Add a cycle to the Graph G_to_add_to.
Parameters
----------
G_to_add_to : graph
A NetworkX graph
nodes_for_cycle: iterable container
A container of nodes. A cycle will be constructed from
the nodes (in order) and added to the graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to every edge in cycle.
See Also
--------
add_path, add_star
Examples
--------
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> nx.add_cycle(G, [0, 1, 2, 3])
>>> nx.add_cycle(G, [10, 11, 12], weight=7)
"""
nlist = iter(nodes_for_cycle)
try:
first_node = next(nlist)
except StopIteration:
return
G_to_add_to.add_node(first_node)
G_to_add_to.add_edges_from(pairwise(chain((first_node,), nlist), cyclic=True), **attr)
示例7: add_path
def add_path(G, nodes, **attr):
"""Add a path to the Graph G.
Parameters
----------
nodes : iterable container
A container of nodes. A path will be constructed from
the nodes (in order) and added to the graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to every edge in path.
See Also
--------
add_star, add_cycle
Examples
--------
>>> G = nx.Graph()
>>> nx.add_path(G, [0, 1, 2, 3])
>>> nx.add_path(G, [10, 11, 12], weight=7)
"""
nlist = iter(nodes)
try:
first_node = next(nlist)
except StopIteration:
return
G.add_node(first_node)
G.add_edges_from(pairwise(chain((first_node,), nlist)), **attr)
示例8: test_four_clique
def test_four_clique():
paths = [
(11, 12, 13, 14, 11, 13, 14, 12), # first 4-clique
(21, 22, 23, 24, 21, 23, 24, 22), # second 4-clique
# paths connecting the 4 cliques such that they are
# 3-connected in G, but not in the subgraph.
# Case where the nodes bridging them do not have degree less than 3.
(100, 13),
(12, 100, 22),
(13, 200, 23),
(14, 300, 24),
]
G = nx.Graph(it.chain(*[pairwise(path) for path in paths]))
# The subgraphs and ccs are different for k=3
local_ccs = fset(nx.k_edge_components(G, k=3))
subgraphs = fset(nx.k_edge_subgraphs(G, k=3))
assert_not_equal(local_ccs, subgraphs)
# The cliques ares in the same cc
clique1 = frozenset(paths[0])
clique2 = frozenset(paths[1])
assert_in(clique1.union(clique2).union({100}), local_ccs)
# but different subgraphs
assert_in(clique1, subgraphs)
assert_in(clique2, subgraphs)
assert_equal(G.degree(100), 3)
_check_edge_connectivity(G)
示例9: ladder_graph
def ladder_graph(n, create_using=None):
"""Return the Ladder graph of length n.
This is two paths of n nodes, with
each pair connected by a single edge.
Node labels are the integers 0 to 2*n - 1.
"""
if create_using is not None and create_using.is_directed():
raise NetworkXError("Directed Graph not supported")
G = empty_graph(2 * n, create_using)
G.add_edges_from(pairwise(range(n)))
G.add_edges_from(pairwise(range(n, 2 * n)))
G.add_edges_from((v, v + n) for v in range(n))
return G
示例10: test_triangles
def test_triangles():
paths = [
(11, 12, 13, 11), # first 3-clique
(21, 22, 23, 21), # second 3-clique
(11, 21), # connected by an edge
]
G = nx.Graph(it.chain(*[pairwise(path) for path in paths]))
# subgraph and ccs are the same in all cases here
assert_equal(
fset(nx.k_edge_components(G, k=1)),
fset(nx.k_edge_subgraphs(G, k=1))
)
assert_equal(
fset(nx.k_edge_components(G, k=2)),
fset(nx.k_edge_subgraphs(G, k=2))
)
assert_equal(
fset(nx.k_edge_components(G, k=3)),
fset(nx.k_edge_subgraphs(G, k=3))
)
_check_edge_connectivity(G)
示例11: test_local_subgraph_difference
def test_local_subgraph_difference():
paths = [
(11, 12, 13, 14, 11, 13, 14, 12), # first 4-clique
(21, 22, 23, 24, 21, 23, 24, 22), # second 4-clique
# paths connecting each node of the 4 cliques
(11, 101, 21),
(12, 102, 22),
(13, 103, 23),
(14, 104, 24),
]
G = nx.Graph(it.chain(*[pairwise(path) for path in paths]))
aux_graph = EdgeComponentAuxGraph.construct(G)
# Each clique is returned separately in k-edge-subgraphs
subgraph_ccs = fset(aux_graph.k_edge_subgraphs(3))
subgraph_target = fset([{101}, {102}, {103}, {104},
{21, 22, 23, 24}, {11, 12, 13, 14}])
assert_equal(subgraph_ccs, subgraph_target)
# But in k-edge-ccs they are returned together
# because they are locally 3-edge-connected
local_ccs = fset(aux_graph.k_edge_components(3))
local_target = fset([{101}, {102}, {103}, {104},
{11, 12, 13, 14, 21, 22, 23, 24}])
assert_equal(local_ccs, local_target)
示例12: test_unorderable_nodes
def test_unorderable_nodes(self):
"""Tests that A* accomodates nodes that are not orderable.
For more information, see issue #554.
"""
# TODO In Python 3, instances of the `object` class are
# unorderable by default, so we wouldn't need to define our own
# class here, we could just instantiate an instance of the
# `object` class. However, we still support Python 2; when
# support for Python 2 is dropped, this test can be simplified
# by replacing `Unorderable()` by `object()`.
class Unorderable(object):
def __le__(self):
raise NotImplemented
def __ge__(self):
raise NotImplemented
# Create the cycle graph on four nodes, with nodes represented
# as (unorderable) Python objects.
nodes = [Unorderable() for n in range(4)]
G = nx.Graph()
G.add_edges_from(pairwise(nodes, cyclic=True))
path = nx.astar_path(G, nodes[0], nodes[2])
assert_equal(len(path), 3)
示例13: wheel_graph
def wheel_graph(n, create_using=None):
""" Return the wheel graph
The wheel graph consists of a hub node connected to a cycle of (n-1) nodes.
Parameters
==========
n : int or iterable
If an integer, node labels are 0 to n with center 0.
If an iterable of nodes, the center is the first.
create_using : Graph, optional (default Graph())
If provided this graph is cleared of nodes and edges and filled
with the new graph. Usually used to set the type of the graph.
Node labels are the integers 0 to n - 1.
"""
n_name, nodes = n
if n_name == 0:
G = nx.empty_graph(0, create_using=create_using)
G.name = "wheel_graph(0)"
return G
G = star_graph(nodes, create_using)
G.name = "wheel_graph(%s)" % (n_name,)
if len(G) > 2:
G.add_edges_from(pairwise(nodes[1:]))
G.add_edge(nodes[-1], nodes[1])
return G
示例14: test_directed_aux_graph
def test_directed_aux_graph():
# Graph similar to the one in
# http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136264
a, b, c, d, e, f, g, h, i = 'abcdefghi'
dipaths = [
(a, d, b, f, c),
(a, e, b),
(a, e, b, c, g, b, a),
(c, b),
(f, g, f),
(h, i)
]
G = nx.DiGraph(it.chain(*[pairwise(path) for path in dipaths]))
aux_graph = EdgeComponentAuxGraph.construct(G)
components_1 = fset(aux_graph.k_edge_subgraphs(k=1))
target_1 = fset([{a, b, c, d, e, f, g}, {h}, {i}])
assert_equal(target_1, components_1)
# Check that the directed case for k=1 agrees with SCCs
alt_1 = fset(nx.strongly_connected_components(G))
assert_equal(alt_1, components_1)
components_2 = fset(aux_graph.k_edge_subgraphs(k=2))
target_2 = fset([{i}, {e}, {d}, {b, c, f, g}, {h}, {a}])
assert_equal(target_2, components_2)
components_3 = fset(aux_graph.k_edge_subgraphs(k=3))
target_3 = fset([{a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}])
assert_equal(target_3, components_3)
示例15: test_local_subgraph_difference_directed
def test_local_subgraph_difference_directed():
dipaths = [
(1, 2, 3, 4, 1),
(1, 3, 1),
]
G = nx.DiGraph(it.chain(*[pairwise(path) for path in dipaths]))
assert_equal(
fset(nx.k_edge_components(G, k=1)),
fset(nx.k_edge_subgraphs(G, k=1))
)
# Unlike undirected graphs, when k=2, for directed graphs there is a case
# where the k-edge-ccs are not the same as the k-edge-subgraphs.
# (in directed graphs ccs and subgraphs are the same when k=2)
assert_not_equal(
fset(nx.k_edge_components(G, k=2)),
fset(nx.k_edge_subgraphs(G, k=2))
)
assert_equal(
fset(nx.k_edge_components(G, k=3)),
fset(nx.k_edge_subgraphs(G, k=3))
)
_check_edge_connectivity(G)