当前位置: 首页>>代码示例>>Python>>正文


Python networkx.radius函数代码示例

本文整理汇总了Python中networkx.radius函数的典型用法代码示例。如果您正苦于以下问题:Python radius函数的具体用法?Python radius怎么用?Python radius使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了radius函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: NetStats

def NetStats(G):
    return { 'radius': nx.radius(G),
             'diameter': nx.diameter(G),
             'connected_components': nx.number_connected_components(G),
             'density' : nx.density(G),
             'shortest_path_length': nx.shortest_path_length(G),
             'clustering': nx.clustering(G)}
开发者ID:CSB-IG,项目名称:NinNX,代码行数:7,代码来源:__init__.py

示例2: strongly_connected_components

def strongly_connected_components():
    conn = sqlite3.connect("zhihu.db")     
    #following_data = pd.read_sql('select user_url, followee_url from Following where followee_url in (select user_url from User where agree_num > 50000) and user_url in (select user_url from User where agree_num > 50000)', conn)        
    following_data = pd.read_sql('select user_url, followee_url from Following where followee_url in (select user_url from User where agree_num > 10000) and user_url in (select user_url from User where agree_num > 10000)', conn)        
    conn.close()
    
    G = nx.DiGraph()
    cnt = 0
    for d in following_data.iterrows():
        G.add_edge(d[1][0],d[1][1])
        cnt += 1
    print 'links number:', cnt

    scompgraphs = nx.strongly_connected_component_subgraphs(G)
    scomponents = sorted(nx.strongly_connected_components(G), key=len, reverse=True)
    print 'components nodes distribution:', [len(c) for c in scomponents]
    
    #plot graph of component, calculate saverage_shortest_path_length of components who has over 1 nodes
    index = 0
    print 'average_shortest_path_length of components who has over 1 nodes:'
    for tempg in scompgraphs:
        index += 1
        if len(tempg.nodes()) != 1:
            print nx.average_shortest_path_length(tempg)
            print 'diameter', nx.diameter(tempg)
            print 'radius', nx.radius(tempg)
        pylab.figure(index)
        nx.draw_networkx(tempg)
        pylab.show()

    # Components-as-nodes Graph
    cG = nx.condensation(G)
    pylab.figure('Components-as-nodes Graph')
    nx.draw_networkx(cG)
    pylab.show()    
开发者ID:TSOTDeng,项目名称:zhihu-analysis-python,代码行数:35,代码来源:zhihu_analysis.py

示例3: print_graph_info

def print_graph_info(graph):
  e = nx.eccentricity(graph)
  print 'graph with %u nodes, %u edges' % (len(graph.nodes()), len(graph.edges()))
  print 'radius: %s' %  nx.radius(graph, e) # min e
  print 'diameter: %s' % nx.diameter(graph, e) # max e
  print 'len(center): %s' % len(nx.center(graph, e)) # e == radius
  print 'len(periphery): %s' % len(nx.periphery(graph, e)) # e == diameter
开发者ID:steinz,项目名称:550project,代码行数:7,代码来源:latency_sim.py

示例4: calculate

def calculate(network):
    try:
        n = nx.radius(network)
    except:
        return 0
 
    return round(n, 7) 
开发者ID:bt3gl,项目名称:NetAna-Complex-Network-Analysis,代码行数:7,代码来源:radius.py

示例5: netstats_simple

def netstats_simple(graph):
    G = graph
    if nx.is_connected(G): 
        d = nx.diameter(G)
        r = nx.radius(G)
    else: 
        d = 'NA - graph is not connected' #should be calculatable on unconnected graph - see example code for hack
        r = 'NA - graph is not connected'
   
#using dictionary to pack values and variablesdot, eps, ps, pdf break equally
    result = {#"""single value measures"""  
              'nn': G.number_of_nodes(),
              'ne': G.number_of_edges(),
              'd': d,
              'r': r,
              'conn': nx.number_connected_components(G),
              'asp': nx.average_shortest_path_length(G), 
#              """number of the largest clique"""
              'cn': nx.graph_clique_number(G),
#              """number of maximal cliques"""
              'mcn': nx.graph_number_of_cliques(G),
#              """transitivity - """
              'tr': nx.transitivity(G),
              #cc = nx.clustering(G) """clustering coefficient"""
              'avgcc': nx.average_clustering(G) } 
#    result['d'] = nx.diameter(G)
    print result
    return result
开发者ID:freyley,项目名称:nets,代码行数:28,代码来源:views.py

示例6: NetStats

def NetStats(G,name):
    
    s=0
    d = nx.degree(G)    
    for i in d.values():
        s = s + i
    
    n = len(G.nodes())
    m = len(G.edges())
    k = float(s)/float(n)
    #k = nx.average_node_connectivity(G)
        
    C = nx.average_clustering(G)
    l = nx.average_shortest_path_length(G)
    Cc = nx.closeness_centrality(G)
    d = nx.diameter(G) #The diameter is the maximum eccentricity.
    r = nx.radius(G) #The radius is the minimum eccentricity.


    
    output = "ESTADISITICOS_"+name
    SALIDA = open(output,"w")
    
    SALIDA.write(("Numero de nodos n = %s \n") %  n)
    SALIDA.write(("Numero de aristas m = %s \n") %  m)
    SALIDA.write(("Grado promedio <k> = %s \n") %  k)
        
    SALIDA.write(("Clustering Coeficient = %s \n") %  C)
    SALIDA.write(("Shortest Path Length = %s \n") %  l)
    #SALIDA.write(("Closeness = %s \n") %  Cc)
    SALIDA.write(("Diameter (maximum eccentricity) = %d \n") %  d)
    SALIDA.write(("Radius (minimum eccentricity) = %d \n") %  r)
开发者ID:saac,项目名称:ComplexNetworks-ToolBox,代码行数:32,代码来源:NetAnalyser.py

示例7: get_tree_symmetries_for_traitset

def get_tree_symmetries_for_traitset(model, simconfig, cultureid, traitset, culture_count_map):
    radii = []

    symstats = stats.BalancedTreeAutomorphismStatistics(simconfig)
    subgraph_set = model.trait_universe.get_trait_graph_components(traitset)
    trait_subgraph = model.trait_universe.get_trait_forest_from_traits(traitset)
    results = symstats.calculate_graph_symmetries(trait_subgraph)

    for subgraph in subgraph_set:
        radii.append( nx.radius(subgraph))

    mean_radii = np.mean(np.asarray(radii))
    sd_radii = np.sqrt(np.var(np.asarray(radii)))
    degrees = nx.degree(trait_subgraph).values()
    mean_degree = np.mean(np.asarray(degrees))
    sd_degree = np.sqrt(np.var(np.asarray(degrees)))
    mean_orbit_mult = np.mean(np.asarray(results['orbitcounts']))
    sd_orbit_mult = np.sqrt(np.var(np.asarray(results['orbitcounts'])))
    max_orbit_mult = np.nanmax(np.asarray(results['orbitcounts']))

    r = dict(cultureid=str(cultureid), culture_count=culture_count_map[cultureid],
             orbit_multiplicities=results['orbitcounts'],
             orbit_number=results['orbits'],
             autgroupsize=results['groupsize'],
             remaining_density=results['remainingdensity'],
             mean_radii=mean_radii,
             sd_radii=sd_radii,
             mean_degree=mean_degree,
             sd_degree=sd_degree,
             mean_orbit_multiplicity=mean_orbit_mult,
             sd_orbit_multiplicity=sd_orbit_mult,
             max_orbit_multiplicity=max_orbit_mult
             )
    #log.debug("groupstats: %s", r)
    return r
开发者ID:mmadsen,项目名称:axelrod-ct,代码行数:35,代码来源:sampling.py

示例8: updateGraphStats

    def updateGraphStats(self, graph):

        origgraph = graph
        if nx.is_connected(graph):
            random = 0
        else:
            connectedcomp = nx.connected_component_subgraphs(graph)
            graph = max(connectedcomp)

        if len(graph) > 1:
            pathlength = nx.average_shortest_path_length(graph)
        else:
            pathlength = 0

        # print graph.nodes(), len(graph), nx.is_connected(graph)

        stats = {
            "radius": nx.radius(graph),
            "density": nx.density(graph),
            "nodecount": len(graph.nodes()),
            "center": nx.center(graph),
            "avgcluscoeff": nx.average_clustering(graph),
            "nodeconnectivity": nx.node_connectivity(graph),
            "components": nx.number_connected_components(graph),
            "avgpathlength": pathlength
        }

        # print "updated graph stats", stats
        return stats
开发者ID:hopeatina,项目名称:flask_heroku,代码行数:29,代码来源:simulator.py

示例9: graph_radius

def graph_radius(graph):
    sp = nx.shortest_path_length(graph,weight='weight')
    ecc = nx.eccentricity(graph,sp=sp)
    if ecc:
        rad = nx.radius(graph,e=ecc)
    else:
        rad = 0
    return rad
开发者ID:MuscClarkProjects,项目名称:casl_fluency_novel_scores,代码行数:8,代码来源:metrix.py

示例10: test_radius

def test_radius(testgraph):
    """
    Testing radius function for graphs.
    """

    a, b = testgraph
    nx_rad = nx.radius(a)
    sg_rad = sg.digraph_distance_measures.radius(b, b.order())
    assert nx_rad == sg_rad
开发者ID:Arpan91,项目名称:staticgraph,代码行数:9,代码来源:test_digraph_distance_measures.py

示例11: get_path_lengths

    def get_path_lengths(self):
        if not hasattr(self,"shortest_path_lenghts") or self.shortest_path_lenghts is None:
            self.shortest_paths_lengths = nx.all_pairs_shortest_path_length(self.G)
            self.avg_shortest_path = sum([ length for sp in self.shortest_paths_lengths.values() for length in sp.values() ])/float(self.N*(self.N-1))
            self.eccentricity = nx.eccentricity(self.G,sp=self.shortest_paths_lengths)
            self.diameter = nx.diameter(self.G,e=self.eccentricity)
            self.radius = nx.radius(self.G,e=self.eccentricity)

        return self.shortest_paths_lengths
开发者ID:benmaier,项目名称:network-properties,代码行数:9,代码来源:networkproperties.py

示例12: get_graph_info

def get_graph_info(graph):
    nodes = networkx.number_of_nodes(graph)
    edges = networkx.number_of_edges(graph)
    radius = networkx.radius(graph)
    diameter = networkx.diameter(graph)
    density = networkx.density(graph)
    average_clustering = networkx.average_clustering(graph)
    average_degree = sum(graph.degree().values()) / nodes
    return nodes, edges, radius, diameter, density, average_clustering, average_degree
开发者ID:zaktan8,项目名称:GCP,代码行数:9,代码来源:util.py

示例13: connectivity

 def connectivity(self):
     components = list(nx.connected_component_subgraphs(self.G))
     print('Connected components number: ')
     print(len(components))
     giant = components.pop(0)
     print('Giant component radius: ')
     print(nx.radius(giant))
     print('Giant component diameter: ')
     print(nx.diameter(giant))
     center = nx.center(giant)
     print('Giant component center: ')
     for i in xrange(len(center)):
         print(self.singer_dict[int(center[i])].split('|')[0])
     inf = self.get_graph_info(giant)
     for i in xrange(len(inf)):
         print(inf[i])
开发者ID:vslovik,项目名称:ARS,代码行数:16,代码来源:analyzer.py

示例14: write_graph

def write_graph(graph_name, g):
    radius = nx.radius(g)
    # https://networkx.github.io/documentation/latest/reference/generated/networkx.algorithms.distance_measures.radius.html

    diameter = nx.diameter(g)
    # https://networkx.github.io/documentation/latest/reference/generated/networkx.algorithms.distance_measures.diameter.html

    closeness = float(sum(nx.algorithms.centrality.closeness_centrality(g).values()))/size
    # https://networkx.github.io/documentation/latest/reference/generated/networkx.algorithms.centrality.closeness_centrality.html#networkx.algorithms.centrality.closeness_centrality

    betweenness = float(sum(nx.algorithms.centrality.betweenness_centrality(g).values()))/size
    # https://networkx.github.io/documentation/latest/reference/generated/networkx.algorithms.centrality.betweenness_centrality.html#networkx.algorithms.centrality.betweenness_centrality

    clustering = float(sum(nx.algorithms.clustering(g).values()))/size
    # https://networkx.github.io/documentation/latest/reference/generated/networkx.algorithms.cluster.clustering.html#networkx.algorithms.cluster.clustering

    print "%s\t%s\t%s\t%s\t%s\t%s" % (graph_name, radius, diameter, closeness, betweenness, clustering)
开发者ID:CogSys,项目名称:cog-abm,代码行数:17,代码来源:graph_statistics.py

示例15: PrintGraphStat

    def PrintGraphStat(self):
        logging.debug("From SVNFileNetwork.PrintGraphStat")
        print "%s" % '-' * 40
        print "Graph Radius : %f" % NX.radius(self)
        print "Graph Diameter : %f" % NX.diameter(self)

        weighted = True
        closenessdict = NX.closeness_centrality(self, distance=weighted)
        print "%s" % '-' * 40
        print "All nodes in graph"

        nodeinfolist = [(node, closeness)
                        for node, closeness in closenessdict.items()]
        # sort the node infolist by closeness number
        nodeinfolist = sorted(
            nodeinfolist, key=operator.itemgetter(1), reverse=True)
        for node, closeness in nodeinfolist:
            print "\t%s : %f" % (node.name(), closeness)
        print "%s" % '-' * 40
开发者ID:arunguru,项目名称:svnplot,代码行数:19,代码来源:svnnetwork.py


注:本文中的networkx.radius函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。