当前位置: 首页>>代码示例>>Python>>正文


Python networkx.minimum_spanning_edges函数代码示例

本文整理汇总了Python中networkx.minimum_spanning_edges函数的典型用法代码示例。如果您正苦于以下问题:Python minimum_spanning_edges函数的具体用法?Python minimum_spanning_edges怎么用?Python minimum_spanning_edges使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了minimum_spanning_edges函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_multigraph_keys

    def test_multigraph_keys(self):
        """Tests that the minimum spanning edges of a multigraph
        preserves edge keys.

        """
        G = nx.MultiGraph()
        G.add_edge(0, 1, key="a", weight=2)
        G.add_edge(0, 1, key="b", weight=1)
        mst_edges = nx.minimum_spanning_edges(G, algorithm="kruskal", data=False)
        assert_equal([(0, 1, "b")], list(mst_edges))
        mst_edges = nx.minimum_spanning_edges(G, algorithm="prim", data=False)
        assert_equal([(0, 1, "b")], list(mst_edges))
开发者ID:wangxiong2015,项目名称:networkx,代码行数:12,代码来源:test_mst.py

示例2: graph_mst

def graph_mst(dist, labels, limit):
    """Обёртка над алгоритмом MST"""

    from collections import deque;
    
    S = nx.Graph(); #исходный граф
    S.add_nodes_from(labels);
    R = S.copy(); #результат кластеризации
    C = nx.Graph(); #читаемый результат

    dq = deque(dist);        
    len_x = len(labels);
    for x in range( len_x-1 ):
        for y in range(x + 1, len_x):
            S.add_edge( labels[x], labels[y], weight=dq.popleft() );

    mst = deque(nx.minimum_spanning_edges(S, data=True));
    del S;

    R.add_edges_from( [edge for edge in mst if( edge[2]['weight'] <= limit)] );

    for num, clust in enumerate(nx.connected_components(R)):
        C.add_node(num, {
                   'size':len(clust),
                   'members': clust
                   });
    del R;

    return C;
开发者ID:esemi,项目名称:dseyenew,代码行数:29,代码来源:main.py

示例3: plotGraph

def plotGraph(g,filename):
    """
    Creates a plot of the graph passed in after transforming
    the full graph into a minimum spanning tree. The MST of a graph
    like this has some significance (but also some locally strange paths)
    and is nice to look add due to the reduced edge density.
    """

    plt.figure(figsize=(15, 10))
    np.random.seed(5)
    mst = nx.minimum_spanning_tree(g, weight='difference')
    pos = nx.spring_layout(mst, iterations=900, k=.008, weight='difference')

    mst_edges = list(nx.minimum_spanning_edges(g, weight='difference'))
    degs = mst.degree()
    nodesize = [degs[v]*80 for v in mst]

    nl = mst.nodes()

    nx.draw_networkx_edges(g, pos, edgelist=mst_edges, alpha=.2)
    nx.draw_networkx_nodes(g, pos, nodelist = nl, node_size=nodesize, node_color=nodesize)

        
    nx.draw_networkx_labels(g, pos, font_color='k', font_size=7)

    plt.title("Artist Network", fontsize=18)
    plt.xticks([])
    plt.yticks([])
    plt.savefig(filename)
开发者ID:nkarnik,项目名称:RapNetwork,代码行数:29,代码来源:artistGraph.py

示例4: get_DT

def get_DT(MI_subset):
    #we use networkx package
    #create a Graph object
    G = nx.Graph()
    G.add_nodes_from(range(len(MI_subset)))
    edge_list = []
    for i in range(len(MI_subset)):
        for j in range(i+1,len(MI_subset)):
            #we negate MI, turning into a MST problem
            edge_list.extend([(i,j,-MI_subset[i][j]),(j,i,-MI_subset[j][i])])
    G.add_weighted_edges_from(edge_list)
    
    min_span_tree = sorted(list(nx.minimum_spanning_edges(G)))
    #rearrange the mst s.t. all 1st axis is parents of 2nd axis
    N = len(min_span_tree)
    #indicates which nodes are added, hence they are not children
    indicator = np.zeros((N+1,1)) #add 1 to compensate for N edges and N+1 nodes
    temp1,temp2,_ = min_span_tree.pop(0)
    rearranged = [[temp1,temp2]]
    indicator[[rearranged[0][0],rearranged[0][1]]] = 1 #default parents
    while min_span_tree:
        for ins in range(len(min_span_tree)):
            if indicator[min_span_tree[ins][0]]==1:
                temp1,temp2,_ = min_span_tree.pop(ins)
                rearranged.append([temp1,temp2])
                indicator[temp2] = 1
                break
            elif indicator[min_span_tree[ins][1]]==1:
                temp1,temp2,_ = min_span_tree.pop(ins)
                rearranged.append([temp2,temp1])
                indicator[temp1] = 1
                break
    return rearranged
开发者ID:zhicongqiu,项目名称:GAD_MLSP2015,代码行数:33,代码来源:GAD_module.py

示例5: test_nan_weights

 def test_nan_weights(self):
     # Edge weights NaN never appear in the spanning tree. see #2164
     G = self.G
     G.add_edge(0, 12, weight=float('nan'))
     edges = nx.minimum_spanning_edges(G, algorithm=self.algo,
                                       data=False, ignore_nan=True)
     actual = sorted((min(u, v), max(u, v)) for u, v in edges)
     expected = [(u, v) for u, v, d in self.minimum_spanning_edgelist]
     assert_edges_equal(actual, expected)
     # Now test for raising exception
     edges = nx.minimum_spanning_edges(G, algorithm=self.algo,
                                       data=False, ignore_nan=False)
     assert_raises(ValueError, list, edges)
     # test default for ignore_nan as False
     edges = nx.minimum_spanning_edges(G, algorithm=self.algo, data=False)
     assert_raises(ValueError, list, edges)
开发者ID:networkx,项目名称:networkx,代码行数:16,代码来源:test_mst.py

示例6: iterativeAlgorithm

 def iterativeAlgorithm(self):
     T = nx.Graph()
     for n in T:
         T.node[n]=self.node[n].copy()
     T.graph=self.graph.copy()
     for u, v, d in nx.minimum_spanning_edges(self, data=True):
         T.add_edge(u,v,d)
         yield T
开发者ID:michalkielak,项目名称:GIS,代码行数:8,代码来源:model.py

示例7: test_without_data

 def test_without_data(self):
     edges = nx.minimum_spanning_edges(self.G, algorithm=self.algo,
                                       data=False)
     # Edges from the spanning edges functions don't come in sorted
     # orientation, so we need to sort each edge individually.
     actual = sorted((min(u, v), max(u, v)) for u, v in edges)
     expected = [(u, v) for u, v, d in self.minimum_spanning_edgelist]
     assert_edges_equal(actual, expected)
开发者ID:networkx,项目名称:networkx,代码行数:8,代码来源:test_mst.py

示例8: test_unicode_name

    def test_unicode_name(self):
        """Tests that using a Unicode string can correctly indicate
        Borůvka's algorithm.

        """
        edges = nx.minimum_spanning_edges(self.G, algorithm=u'borůvka')
        # Edges from the spanning edges functions don't come in sorted
        # orientation, so we need to sort each edge individually.
        actual = sorted((min(u, v), max(u, v), d) for u, v, d in edges)
        assert_edges_equal(actual, self.minimum_spanning_edgelist)
开发者ID:networkx,项目名称:networkx,代码行数:10,代码来源:test_mst.py

示例9: euclidean_minimum_spanning_tree

def euclidean_minimum_spanning_tree(nodes,**kwargs):
    """
    :param nodes: list of (x,y) nodes positions
    :return: :class:`GeoGraph` with minimum spanning tree between nodes

    see https://en.wikipedia.org/wiki/Euclidean_minimum_spanning_tree
    """
    g=GeoGraph(None,**kwargs)
    d=delauney_triangulation(nodes,**kwargs)
    g.add_edges_from(nx.minimum_spanning_edges(d, weight='length'))
    return g
开发者ID:goulu,项目名称:Goulib,代码行数:11,代码来源:graph.py

示例10: create_islands

def create_islands(graph):
    # create minimum spanning tree from undirected edges
    mst_edges = sorted(list(nx.minimum_spanning_edges(graph, data=True)))
    islands = nx.Graph()
    for e0, e1, w in mst_edges:
        ring0 = graph.node[e0]["ring"]
        ring1 = graph.node[e1]["ring"]
        local0, local1 = graph.node[e0]["local"], graph.node[e1]["local"]
        if ring0 != ring1:
            islands.add_edge(ring0, ring1, weight=w, connection=[e0, e1, local0, local1])
    return islands
开发者ID:asher-pembroke,项目名称:bokeh-tools,代码行数:11,代码来源:filled_contours.py

示例11: euclidean_minimum_spanning_tree

def euclidean_minimum_spanning_tree(nodes, **kwargs):
    """
    :param nodes: list of (x,y) nodes positions
    :return: geograph with minimum spanning tree between  nodes
    see https://en.wikipedia.org/wiki/Euclidean_minimum_spanning_tree
    """
    g = GeoGraph(None, **kwargs)
    d = delauney_triangulation(nodes, **kwargs)
    for edge in nx.minimum_spanning_edges(d, weight="length"):
        g.add_edge(*edge)
    return g
开发者ID:JustinTArthur,项目名称:Goulib,代码行数:11,代码来源:graph.py

示例12: main

def main():
	# build up a graph
	filename = '../../florentine_families_graph.gpickle'
	G = nx.read_gpickle(filename)

	# Spanning tree
	mst = nx.minimum_spanning_tree(G) 
	out_file = 'florentine_families_graph_minimum_spanning_tree.png'
	PlotGraph.plot_graph(G, filename=out_file, colored_edges=mst.edges())

	edges = nx.minimum_spanning_edges(G, weight='weight', data=True)
	list_edges = list(edges)
	print(list_edges)
开发者ID:sparkandshine,项目名称:complex_network,代码行数:13,代码来源:spanning_tree.py

示例13: mst_pairs

def mst_pairs(pairs):
    """Given all pairwise distances, determine the minimal spanning subset.

    Convert pairwise distances to an undirected graph, determine the
    minumum spanning tree, and emit the minimal list of edges to connect all
    nodes.

    Input: iterable of (SeqRecord, SeqRecord, distance)
    Output: iterable of (SeqRecord, SeqRecord)
    """
    G = networkx.Graph()
    for left, right, score in pairs:
        G.add_edge(left, right, weight=1.0/score)
    mst = networkx.minimum_spanning_edges(G, data=False)
    return list(mst)
开发者ID:Tsingke,项目名称:fammer,代码行数:15,代码来源:tmalign.py

示例14: minimum_spanning_tree

def minimum_spanning_tree(G, weight="weight"):
    """Return a minimum spanning tree or forest of an undirected 
    weighted graph.

    A minimum spanning tree is a subgraph of the graph (a tree) with
    the minimum sum of edge weights.

    If the graph is not connected a spanning forest is constructed.  A
    spanning forest is a union of the spanning trees for each
    connected component of the graph.

    Parameters
    ----------
    G : NetworkX Graph
    
    weight : string
       Edge data key to use for weight (default 'weight').

    Returns
    -------
    G : NetworkX Graph
       A minimum spanning tree or forest. 
    
    Examples
    --------
    >>> G=nx.cycle_graph(4)
    >>> G.add_edge(0,3,weight=2) # assign weight 2 to edge 0-3
    >>> T=nx.minimum_spanning_tree(G)
    >>> print(sorted(T.edges(data=True)))
    [(0, 1, {}), (1, 2, {}), (2, 3, {})]

    Notes
    -----
    Uses Kruskal's algorithm.

    If the graph edges do not have a weight attribute a default weight of 1
    will be used.
    """
    T = nx.Graph(nx.minimum_spanning_edges(G, weight=weight, data=True))
    # Add isolated nodes
    if len(T) != len(G):
        T.add_nodes_from([n for n, d in G.degree().items() if d == 0])
    # Add node and graph attributes as shallow copy
    for n in T:
        T.node[n] = G.node[n].copy()
    T.graph = G.graph.copy()
    return T
开发者ID:ciarancourtney,项目名称:cloudify-trial,代码行数:47,代码来源:mst.py

示例15: get_sparsified_MPST_remove_leaves

def get_sparsified_MPST_remove_leaves(G, K, directed=False):
    '''
    Sparsify graph using most probable spanning tree.
    If |MPST| < K, then add most probable edges that are not included.
    If |MPST| > K, then remove edges that are adjacent to leaves
    '''
    G_edges = G.edges(data=True)
    if directed:
        # MPST_edges = branchings.minimum_spanning_arborescence(G, attr='weight').edges(data=True)
        pass
    else:
        MPST_edges = list(nx.minimum_spanning_edges(G,weight='weight',data=True))
    edges = [e for e in G_edges if e not in MPST_edges]
    mp_edges = sorted(edges,
                    key = lambda (u,v,d): exp(1)**(-d["weight"]),
                    reverse = True)
    if len(MPST_edges) <= K:
        MPST_edges.extend(mp_edges[:(K - len(MPST_edges))])
    else:
        # remove edges that are adjacent to leaves (keeping connectivity)
        # if ties remove with lowest probability (keeping probability)
        #TODO check why in case of directed MPST it doesn't work
        MPST = nx.Graph(MPST_edges)
        degrees = dict()
        leaves = set()
        for u in MPST:
            degrees[u] = len(MPST[u])
            if degrees[u] == 1:
                v, d = MPST[u].items()[0]
                leaves.add((u,v,d["weight"]))
        for _ in range(len(MPST_edges) - K):
            u,v,d = min(leaves, key = lambda (u,v,d): exp(1)**(-d))
            MPST.remove_edge(u,v)
            leaves.remove((u,v,d))
            v_edges = MPST[v].items()
            if len(v_edges) == 1:
                w, t = v_edges[0]
                leaves.add((v,w,t["weight"]))
            elif len(v_edges) == 0:
                leaves.remove((v,u,d))
        print len(MPST.edges()), K
        MPST_edges = MPST.edges(data=True)
    return MPST_edges
开发者ID:nd7141,项目名称:GraphSparsification,代码行数:43,代码来源:MPST.py


注:本文中的networkx.minimum_spanning_edges函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。