本文整理汇总了Python中networkx.katz_centrality_numpy函数的典型用法代码示例。如果您正苦于以下问题:Python katz_centrality_numpy函数的具体用法?Python katz_centrality_numpy怎么用?Python katz_centrality_numpy使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了katz_centrality_numpy函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_eigenvector_centrality_weighted
def test_eigenvector_centrality_weighted(self):
G = self.G
alpha = self.G.alpha
p = networkx.katz_centrality_numpy(G, alpha)
print p.values()
for (a, b) in zip(list(p.values()), self.G.evc):
assert_almost_equal(a, b)
示例2: test_eigenvector_v_katz_random
def test_eigenvector_v_katz_random(self):
G = nx.gnp_random_graph(10,0.5, seed=1234)
l = float(max(eigvals(nx.adjacency_matrix(G).todense())))
e = nx.eigenvector_centrality_numpy(G)
k = nx.katz_centrality_numpy(G, 1.0/l)
for n in G:
assert_almost_equal(e[n], k[n])
示例3: create_centralities_list
def create_centralities_list(G,maxiter=2000,pphi=5,centList=[]):
if len(centList)==0:
centList=['degree_centrality','closeness_centrality','betweenness_centrality',
'eigenvector_centrality','katz_centrality','page_rank']
cenLen=len(centList)
valus={}
# plt.figure(figsize=figsi)
for uu,centr in enumerate(centList):
if centr=='degree_centrality':
cent=nx.degree_centrality(G)
sstt='Degree Centralities'
ssttt='degree centrality'
valus[centr]=cent
elif centr=='closeness_centrality':
cent=nx.closeness_centrality(G)
sstt='Closeness Centralities'
ssttt='closeness centrality'
valus[centr]=cent
elif centr=='betweenness_centrality':
cent=nx.betweenness_centrality(G)
sstt='Betweenness Centralities'
ssttt='betweenness centrality'
valus[centr]=cent
elif centr=='eigenvector_centrality':
try:
cent=nx.eigenvector_centrality(G,max_iter=maxiter)
sstt='Eigenvector Centralities'
ssttt='eigenvector centrality'
valus[centr]=cent
except:
valus[centr]=None
continue
elif centr=='katz_centrality':
phi = (1+math.sqrt(pphi))/2.0 # largest eigenvalue of adj matrix
cent=nx.katz_centrality_numpy(G,1/phi-0.01)
sstt='Katz Centralities'
ssttt='Katz centrality'
valus[centr]=cent
elif centr=='page_rank':
try:
cent=nx.pagerank(G)
sstt='PageRank'
ssttt='pagerank'
valus[centr]=cent
except:
valus[centr]=None
continue
print '%s done!!!' %sstt
return valus
示例4: test_beta_as_dict
def test_beta_as_dict(self):
alpha = 0.1
beta = {0: 1.0, 1: 1.0, 2: 1.0}
b_answer = {0: 0.5598852584152165, 1: 0.6107839182711449,
2: 0.5598852584152162}
G = nx.path_graph(3)
b = nx.katz_centrality_numpy(G, alpha, beta)
for n in sorted(G):
assert_almost_equal(b[n], b_answer[n], places=4)
示例5: test_P3_unweighted
def test_P3_unweighted(self):
"""Katz centrality: P3"""
alpha = 0.1
G = nx.path_graph(3)
b_answer = {0: 0.5598852584152165, 1: 0.6107839182711449,
2: 0.5598852584152162}
b = nx.katz_centrality_numpy(G, alpha, weight=None)
for n in sorted(G):
assert_almost_equal(b[n], b_answer[n], places=4)
示例6: draw_centralities
def draw_centralities(G,centr,pos,with_edgewidth=False,withLabels=True,pernode_dict={},title_st='', labfs=10,valpha=0.4,ealpha=0.4):
plt.figure(figsize=(12,12))
if centr=='degree_centrality':
cent=nx.degree_centrality(G)
sstt='Degree Centralities'
ssttt='degree centrality'
elif centr=='closeness_centrality':
cent=nx.closeness_centrality(G)
sstt='Closeness Centralities'
ssttt='closeness centrality'
elif centr=='betweenness_centrality':
cent=nx.betweenness_centrality(G)
sstt='Betweenness Centralities'
ssttt='betweenness centrality'
elif centr=='eigenvector_centrality':
cent=nx.eigenvector_centrality(G,max_iter=1000)
sstt='Eigenvector Centralities'
ssttt='eigenvector centrality'
elif centr=='katz_centrality':
phi = (1+math.sqrt(5))/2.0 # largest eigenvalue of adj matrix
cent=nx.katz_centrality_numpy(G,1/phi-0.01)
sstt='Katz Centralities'
ssttt='Katz centrality'
elif centr=='page_rank':
cent=nx.pagerank(G)
sstt='PageRank'
ssttt='pagerank'
cs={}
for k,v in cent.items():
if v not in cs:
cs[v]=[k]
else:
cs[v].append(k)
for k in sorted(cs,reverse=True):
for v in cs[k]:
print 'Node %s has %s = %.4f' %(v,ssttt,k)
if withLabels:
if len(pernode_dict)>1:
labels={i:v for v,i in pernode_dict.items() if i in G.nodes()}
labe=nx.draw_networkx_labels(G,pos=pos,labels=labels,font_size=20)
else:
labe=nx.draw_networkx_labels(G,pos=pos,font_size=labfs)
nx.draw_networkx_nodes(G,pos=pos,nodelist=cent.keys(), #with_labels=withLabels,
node_size = [d*4000 for d in cent.values()],node_color=cent.values(),
cmap=plt.cm.Reds,alpha=valpha)
if with_edgewidth:
edgewidth=[]
for (u,v,d) in G.edges(data=True):
edgewidth.append(d['weight'])
else:
edgewidth=[1 for i in G.edges()]
nx.draw_networkx_edges(G,pos=pos,edge_color='b',width=edgewidth, alpha=ealpha)
plt.title(title_st+' '+ sstt,fontsize=20)
kk=plt.axis('off')
示例7: centrailtyM
def centrailtyM(A,num=5):
G=nx.DiGraph(A)
ranks=np.zeros((num,8))
ranks[:,0]=np.argsort(nx.in_degree_centrality(G).values())[::-1][:num]
ranks[:,1]=np.argsort(nx.closeness_centrality(G).values())[::-1][:num]
ranks[:,2]=np.argsort(nx.betweenness_centrality(G).values())[::-1][:num]
ranks[:,3]=np.argsort(nx.eigenvector_centrality_numpy(G).values())[::-1][:num]
ranks[:,4]=np.argsort(nx.katz_centrality_numpy(G,weight=None).values())[::-1][:num]
ranks[:,5]=np.argsort(nx.pagerank_numpy(G,weight=None).values())[::-1][:num]
return ranks
示例8: displayCentralities
def displayCentralities():
print("---------------------------")
print("Degree centrality (the number of links incident upon a node) => LIKELIHOOD TO CATCH AN INFORMATION")
print(sorted(list(nx.degree_centrality(G).items()),key=operator.itemgetter(1),reverse=True))
print("---------------------------")
print("---------------------------")
print("Betweenness centrality (quantifies the number of times a node acts as a bridge along the shortest path between two other nodes) => CONTROL ON OTHERS")
print(sorted(list(nx.betweenness_centrality(G).items()),key=operator.itemgetter(1),reverse=True))
print("---------------------------")
print("---------------------------")
print("Eigenvector centrality (a measure of the influence of a node in a network)")
print(sorted(list(nx.eigenvector_centrality(G).items()),key=operator.itemgetter(1),reverse=True))
print("---------------------------")
print("---------------------------")
print("Katz centrality (relative influence of a node)")
print(sorted(list(nx.katz_centrality_numpy(G).items()),key=operator.itemgetter(1),reverse=True))
print("---------------------------")
示例9: test_multiple_alpha
def test_multiple_alpha(self):
alpha_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
for alpha in alpha_list:
b_answer = {0.1: {0: 0.5598852584152165, 1: 0.6107839182711449,
2: 0.5598852584152162},
0.2: {0: 0.5454545454545454, 1: 0.6363636363636365,
2: 0.5454545454545454},
0.3: {0: 0.5333964609104419, 1: 0.6564879518897746,
2: 0.5333964609104419},
0.4: {0: 0.5232045649263551, 1: 0.6726915834767423,
2: 0.5232045649263551},
0.5: {0: 0.5144957746691622, 1: 0.6859943117075809,
2: 0.5144957746691622},
0.6: {0: 0.5069794004195823, 1: 0.6970966755769258,
2: 0.5069794004195823}}
G = nx.path_graph(3)
b = nx.katz_centrality_numpy(G, alpha)
for n in sorted(G):
assert_almost_equal(b[n], b_answer[alpha][n], places=4)
示例10: test_empty_numpy
def test_empty_numpy(self):
e = networkx.katz_centrality_numpy(networkx.Graph(), 0.1)
示例11: test_katz_centrality_unweighted
def test_katz_centrality_unweighted(self):
G = self.H
alpha = self.H.alpha
p = nx.katz_centrality_numpy(G, alpha)
for (a, b) in zip(list(p.values()), self.G.evc):
assert_almost_equal(a, b)
示例12: calculate_katz
def calculate_katz(g):
return nx.katz_centrality_numpy(g)
示例13: test_bad_beta_numbe
def test_bad_beta_numbe(self):
G = nx.Graph([(0,1)])
e = nx.katz_centrality_numpy(G, 0.1,beta='foo')
示例14: test_bad_beta
def test_bad_beta(self):
G = nx.Graph([(0,1)])
beta = {0:77}
e = nx.katz_centrality_numpy(G, 0.1,beta=beta)
示例15:
import matplotlib.pyplot as plt
import pygraphviz
import math
edges = pd.read_csv('fulllist.csv', encoding = 'utf-8')
#edges[(edges.name_x == 'Zadie Smith') | (edges.name_y == 'Zadie Smith')]
H = nx.DiGraph()
#phil = edges[(edges.phil_x == 1) & (edges.phil_y == 1)]
#phil = phil.dropna(subset = ['name_x', 'name_y'])
#H.add_edges_from(numpy.array(phil[['name_x', 'name_y']]))
edges = edges.dropna(subset = ['name_x', 'name_y'])
H.add_edges_from(numpy.array(edges[['name_x', 'name_y']]))
d = nx.degree(H)
k = nx.katz_centrality_numpy(H.reverse(), alpha = 0.075, beta = 1)
#b = nx.betweenness_centrality(H)
s = pd.Series(k, name = 'kc_score')
s.index.name = 'name'
s.reset_index()
s.sort('kc_score', ascending=False)
print (s[0:60])
#nx.ancestors(H, 'Plato')
#plt.figure(figsize = (50,50))
#try:
#pos=nx.graphviz_layout(H, prog='dot')
#except:
# pos=nx.spring_layout(H,iterations=20)
#pos = nx.spring_layout(H,iterations=20)