当前位置: 首页>>代码示例>>Python>>正文


Python networkx.k_core函数代码示例

本文整理汇总了Python中networkx.k_core函数的典型用法代码示例。如果您正苦于以下问题:Python k_core函数的具体用法?Python k_core怎么用?Python k_core使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了k_core函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _cliques_heuristic

def _cliques_heuristic(G, H, k, min_density):
    h_cnumber = nx.core_number(H)
    for i, c_value in enumerate(sorted(set(h_cnumber.values()), reverse=True)):
        cands = set(n for n, c in h_cnumber.items() if c == c_value)
        # Skip checking for overlap for the highest core value
        if i == 0:
            overlap = False
        else:
            overlap = set.intersection(*[
                set(x for x in H[n] if x not in cands)
                for n in cands])
        if overlap and len(overlap) < k:
            SH = H.subgraph(cands | overlap)
        else:
            SH = H.subgraph(cands)
        sh_cnumber = nx.core_number(SH)
        SG = nx.k_core(G.subgraph(SH), k)
        while not (_same(sh_cnumber) and nx.density(SH) >= min_density):
            #!! This subgraph must be writable => .copy()
            SH = H.subgraph(SG).copy()
            if len(SH) <= k:
                break
            sh_cnumber = nx.core_number(SH)
            sh_deg = dict(SH.degree())
            min_deg = min(sh_deg.values())
            SH.remove_nodes_from(n for n, d in sh_deg.items() if d == min_deg)
            SG = nx.k_core(G.subgraph(SH), k)
        else:
            yield SG
开发者ID:jg-you,项目名称:networkx,代码行数:29,代码来源:kcomponents.py

示例2: test_k_core

 def test_k_core(self):
     # k=0
     k_core_subgraph = nx.k_core(self.H, k=0)
     assert_equal(sorted(k_core_subgraph.nodes()), sorted(self.H.nodes()))
     # k=1
     k_core_subgraph = nx.k_core(self.H, k=1)
     assert_equal(sorted(k_core_subgraph.nodes()), [1, 2, 3, 4, 5, 6])
     # k = 2
     k_core_subgraph = nx.k_core(self.H, k=2)
     assert_equal(sorted(k_core_subgraph.nodes()), [2, 4, 5, 6])
开发者ID:4c656554,项目名称:networkx,代码行数:10,代码来源:test_core.py

示例3: get_k_core

def get_k_core(reviews_path,k_val):
	# Report start of process
	print "=================================="
	print "EXTRACTING K-CORE OF PID GRAPH    "
	print "=================================="

	print "AT STEP #1: Determine which reviewer reviewed which products"
#	with ufora.remotely.downloadAll():
	(PID_to_lines,PID_to_reviewerID) = get_PID_facts(reviews_path)	

	print "At STEP #2: Created weighted edges"
#	with ufora.remotely.downloadAll():
	weighted_edges = get_weighted_edges(PID_to_reviewerID)

	print "AT STEP #3: Create PID graph structure"
#	with ufora.remotely.downloadAll():
	PID_graph = create_graph(PID_to_reviewerID,weighted_edges)	
	print nx.info(PID_graph)	

	print "AT STEP #4: Extracting K-core"
#	with ufora.remotely.downloadAll():
	k_core_graph = nx.k_core(PID_graph,k_val)
	print nx.info(k_core_graph)
	pickle.dump(graph,open("graph",'w'))
	
	print "DONE!"
开发者ID:words-sdsc,项目名称:recsys,代码行数:26,代码来源:extractKCore.py

示例4: calculate_k_core

def calculate_k_core(G, K):
    core_k = nx.k_core(G, k=K)
    nx.draw(core_k)
    plt.savefig("./images/kCore" + str(K) + ".png")
    if verbose:
        print "\r\nk-Core: " + str(K)
        print core_k.nodes()
        plt.show()
    write_csv_group('./data/results/kCore' + str(K) + '.csv', core_k.nodes())
开发者ID:aitoralmeida,项目名称:morelab-coauthor-analyzer,代码行数:9,代码来源:NetworkAnalyzer.py

示例5: calculate_main_k_core

def calculate_main_k_core(G):
    core_main = nx.k_core(G)
    nx.draw(core_main)
    plt.savefig("./images/kCoreMain.png")
    if verbose:
        print "\r\nk-Core: Main"
        print core_main.nodes()
        plt.show()
    write_csv_group('./data/results/mainKCore.csv', core_main.nodes())
开发者ID:aitoralmeida,项目名称:morelab-coauthor-analyzer,代码行数:9,代码来源:NetworkAnalyzer.py

示例6: getKCore

def getKCore(undirectedGraph):
    pos = nx.spring_layout(undirectedGraph,k=0.15,iterations=20)
    nx.draw(undirectedGraph,pos,node_size=100,node_color = 'k')
    kCore = nx.k_core(undirectedGraph)
    kCore_edges = nx.edges(kCore)
    nx.draw_networkx_nodes(undirectedGraph,pos,nodelist=kCore,node_color='b',node_size = 100)    
    nx.draw_networkx_edges(undirectedGraph,pos,edgelist=kCore_edges,edge_color='b',width=3)
#    fig = plt.gcf()    
#    fig.set_size_inches((10, 10))
    plt.savefig('kcore.eps', format='eps', dpi=1000)
    plt.show()
开发者ID:utkarshbali,项目名称:Masters-Project,代码行数:11,代码来源:poster.py

示例7: find_k_cores

 def find_k_cores(self, max_k):       
     current_graph = self.G
     if self.verbose:
         print 'K-CORES' 
     for i in range(max_k,0,-1):
         core_k = nx.k_core(current_graph, i)
         if len(core_k) > 0:
             self.k_cores.append(core_k.nodes())
             current_graph = nx.k_crust(current_graph, i)  
     if self.verbose:
         print 'Found %s k-cores' %(len(self.k_cores))
     return len(self.k_cores)
开发者ID:aitoralmeida,项目名称:rule-distribution,代码行数:12,代码来源:community_creator.py

示例8: detect_recover

def detect_recover(filename,k):
    #Read Network files as gml file type, create a networkx graph and use the eisted graph file
	#Random graph may have poor performance, erdos renyi graph doesn't have true community structure
	G = nx.read_gml(filename)
	H = nx.k_core (G, int(k))
	#print len(H.nodes())
	#kcore_partition = kcore_partition(H)
	partition = community.best_partition(H)
	#print partition 
	sorted_recover_nodes = sort_by_neighbor(H, G)
	#print sorted_recover_nodes
	vote_for_node(partition, sorted_recover_nodes, G)
	new_partition = vote_for_node(partition, sorted_recover_nodes, G)
	return convert_partition_format(new_partition)
开发者ID:hoduan,项目名称:SU-Community-Detection,代码行数:14,代码来源:kcore_commu.py

示例9: getKCore

def getKCore(graph,worksheet):
    global name
    kCore = nx.k_core(graph)
    print 'KCore : '
    directory = "wordGraphs/top50/"+name
    directory = os.path.normpath(directory)
    if not os.path.exists(directory):
        os.makedirs(directory)    
    path = directory +"/KCore.png"
    fileName = os.path.normpath(path)
    nx.draw(kCore,node_size=100)
    plt.title(r'$\mathrm{K-Core\ for\ }' + name +'\ $',fontsize = 15)
    plt.savefig(fileName, format="PNG")
    plt.show()
    worksheet.insert_image(4,5,fileName, {'x_scale': 0.5, 'y_scale': 0.5})
开发者ID:utkarshbali,项目名称:Masters-Project,代码行数:15,代码来源:getWordGraphStats.py

示例10: KCored

def KCored(G):
	# Set k value
	k_values = []
	# k = 0.0
	nodes = G.nodes()
	for node in nodes:
		k_values.append(G.degree(node))
	k_values = sorted(k_values)
	k = k_values[len(k_values)/2]
	# print clusterFile, k
	# print min(k_values)
	# print max(k_values)	
	subG = nx.k_core(G, k=k) # Returns subgraph
	# print len(G.nodes()), '\t', len(subG.nodes())
	nx.write_weighted_edgelist(subG, outDirK + clusterFile, 'w')
开发者ID:svnathan,项目名称:224w_window,代码行数:15,代码来源:analyze.py

示例11: kcore_partition

def kcore_partition(k, FILE_PATH):
#Read Network files as gml file type, create a networkx graph and use the eisted graph file
#Random graph may have poor performance, erdos renyi graph doesn't have true community structure
	G = nx.read_gml(FILE_PATH)
	H = nx.k_core (G, k)
	partition = community.best_partition(H)
	communities = list(set(partition.values()))
	new_partition = {}
	for community_part in communities:
        	new_partition[community_part] = []
	#print new_partition
	for nodes in partition.keys():
        	new_partition[partition[nodes]].append(nodes)
	#print new_partition
	return new_partition
	'''
开发者ID:raven47zrq,项目名称:SU-Community-Detection,代码行数:16,代码来源:kcore_commu.py

示例12: SentimentAnalysis_RGO_Belief_Propagation

def SentimentAnalysis_RGO_Belief_Propagation(nxg):
	#Bayesian Pearl Belief Propagation is done by
	#assuming the senti scores as probabilities with positive
	#and negative signs and the Recursive Gloss Overlap
	#definition graph being the graphical model.
	#Sentiment as a belief potential is passed through 
	#the DFS tree of this graph.  
	dfs_positive_belief_propagated=1.0
	core_positive_belief_propagated=1.0
	dfs_negative_belief_propagated=1.0
	core_negative_belief_propagated=1.0
	core_xnegscore=core_xposscore=1.0
	dfs_knegscore=dfs_kposscore=dfs_vposscore=dfs_vnegscore=1.0
	sorted_core_nxg=sorted(nx.core_number(nxg).items(),key=operator.itemgetter(1), reverse=True)
	kcore_nxg=nx.k_core(nxg,6,nx.core_number(nxg))
	for x in sorted_core_nxg:
	      xsset = swn.senti_synsets(x[0])
	      if len(xsset) > 2:
	     		core_xnegscore = float(xsset[0].neg_score())*10.0
	      		core_xposscore = float(xsset[0].pos_score())*10.0
	      if core_xnegscore == 0.0:
			core_xnegscore = 1.0
	      if core_xposscore == 0.0:
			core_xposscore = 1.0
	      core_positive_belief_propagated *= float(core_xposscore)
	      core_negative_belief_propagated *= float(core_xnegscore)
	print "Core Number: RGO_sentiment_analysis_belief_propagation: %f, %f" % (float(core_positive_belief_propagated), float(core_negative_belief_propagated))
	#for k,v in nx.dfs_edges(nxg):
	for k,v in nx.dfs_edges(kcore_nxg):
	      ksynset = swn.senti_synsets(k)
	      vsynset = swn.senti_synsets(v)
	      if len(ksynset) > 2:
	     		dfs_knegscore = float(ksynset[0].neg_score())*10.0
	      		dfs_kposscore = float(ksynset[0].pos_score())*10.0
	      if len(vsynset) > 2:
			dfs_vnegscore = float(vsynset[0].neg_score())*10.0
			dfs_vposscore = float(vsynset[0].pos_score())*10.0
	      dfs_kposscore_vposscore = float(dfs_kposscore*dfs_vposscore)
	      dfs_knegscore_vnegscore = float(dfs_knegscore*dfs_vnegscore)
	      if dfs_kposscore_vposscore == 0.0:
		dfs_kposscore_vposscore = 1.0
	      if dfs_knegscore_vnegscore == 0.0:
		dfs_knegscore_vnegscore = 1.0
	      dfs_positive_belief_propagated *= float(dfs_kposscore_vposscore)
	      dfs_negative_belief_propagated *= float(dfs_knegscore_vnegscore)
	print "K-Core DFS: RGO_sentiment_analysis_belief_propagation: %f, %f" % (float(dfs_positive_belief_propagated),float(dfs_negative_belief_propagated))
	return (dfs_positive_belief_propagated, dfs_negative_belief_propagated, core_positive_belief_propagated, core_negative_belief_propagated)
开发者ID:shrinivaasanka,项目名称:asfer-github-code,代码行数:47,代码来源:SocialNetworkAnalysis_WebSpider.py

示例13: week4

def week4():
    path = "D:\Dropbox\PhD\My Work\Algorithms\@Machine Learning\Lectures\Social Network Analysis\Week 4_Community Structure\wikipedia.gml"
    wiki = nx.read_gml(path)
    wiki = wiki.to_undirected()
    
    # cliques
    cid, cls = max(nx.node_clique_number(wiki).iteritems(), key=operator.itemgetter(1))
    print 'clique', cid, ' size:', cls
    
    # k-cores
    kcs = nx.k_core(wiki)
    print 'k-core size:', len(kcs.node)
    
    # community 
    cs = list(nx.k_clique_communities(wiki, 2))
    ratio = (len(cs[0]) + 0.0) / len(wiki.node)
    print 'community ratio:', ratio
开发者ID:nitsel,项目名称:happy-coding-projects.happy-coding-p,代码行数:17,代码来源:sna.py

示例14: core_topological_sort

def core_topological_sort(vg_en_tn_prdct,threshold=1):
	invdistmerit=inverse_distance_intrinsic_merit(vg_en_tn_prdct)
	vg_en_tn_prdct_nxg=nx.DiGraph()
	rowframe=0
	columnframe=0
	for row in invdistmerit[0]:
		for column in row:
			print "column:",column
			if max(column) > threshold: 
				vg_en_tn_prdct_nxg.add_edge(rowframe, columnframe)	
			columnframe = columnframe + 1
		rowframe = rowframe + 1
	vg_en_tn_prdct_nxg.remove_edges_from(nx.selfloop_edges(vg_en_tn_prdct_nxg))
	video_core=nx.k_core(vg_en_tn_prdct_nxg.to_undirected())
	topsorted_video_core=nx.topological_sort(video_core)	
	print "Topological Sorted Core Summary of the Video - Edges:",topsorted_video_core
	return topsorted_video_core
开发者ID:shrinivaasanka,项目名称:asfer-github-code,代码行数:17,代码来源:ImageGraph_Keras_Theano.py

示例15: rank

    def rank(self,return_type='set'):
        entity = self.get_entity()
        
        graph = self.get_graph()
        if graph==None:
            graph = self.build_graph()

        sub_graphs = nx.connected_component_subgraphs(graph)

        result = set()
        
        result = set(nx.k_core(graph,k=3).nodes())
        
        if return_type == 'set':
            return result
        else:
            result = {ite:1 for ite in result}
            return result
开发者ID:JunoShen,项目名称:insummer,代码行数:18,代码来源:ranker.py


注:本文中的networkx.k_core函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。