当前位置: 首页>>代码示例>>Python>>正文


Python networkx.fast_gnp_random_graph函数代码示例

本文整理汇总了Python中networkx.fast_gnp_random_graph函数的典型用法代码示例。如果您正苦于以下问题:Python fast_gnp_random_graph函数的具体用法?Python fast_gnp_random_graph怎么用?Python fast_gnp_random_graph使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了fast_gnp_random_graph函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: go

def go():
    """
    Run the IterF algorithm on some random graphs.
    """
    l = 9
    n = 2**l
    p = 3*math.log(n)/n

    for i in range(100):
        # Generate a random graph:
        g = nx.fast_gnp_random_graph(n,p)
        # Build AlgState from the graph:
        algs = AlgState(g)
        # Run the IterF algorithm until we reach a stationary state:
        algs.run_until_stat()

        # Print the properties of the resulting state:
        print('next_node Injective: {} | '
              'One round cycles: {} | '
              'Is only one cycle: {}'.\
                      format(\
                algs.is_next_node_injection(),\
                algs.is_all_cycles_one_round(),\
                algs.is_only_one_cycle())\
                )
开发者ID:realcr,项目名称:freedomlayer_code,代码行数:25,代码来源:alg_state.py

示例2: test_edge_cutset_random_graphs

def test_edge_cutset_random_graphs():
    for i in range(5):
        G = nx.fast_gnp_random_graph(50,0.2)
        cutset = nx.minimum_edge_cut(G)
        assert_equal(nx.edge_connectivity(G), len(cutset))
        G.remove_edges_from(cutset)
        assert_false(nx.is_connected(G))
开发者ID:Friedsoap,项目名称:networkx,代码行数:7,代码来源:test_cuts.py

示例3: smallWorldness

def smallWorldness(graph):
	return_values = []
	#Small-worldness criteria
	n = len(nx.nodes(graph))
	e = len(nx.edges(graph))
	#probability of edges: (number of edges in real graph)/possible edges
	p = e/float((n*(n-1)/2.0))	
	##
	#generate random graph using probability
	rand_graph = nx.fast_gnp_random_graph(n, p, seed=1)
	#calculate values for real graph and random graph
	Creal = nx.transitivity(graph) #float
	Crand = nx.transitivity(rand_graph) #float
	Lreal = 0
	Lrand = 0
	real_sum = 0
	rand_sum = 0
	splReal = shortest_path_lengths(graph)
	splRand = shortest_path_lengths(rand_graph)
	for i in range(len(splReal)):
		real_sum += splReal[i]
		rand_sum += splRand[i]
	Lreal = real_sum / len(splReal)
	Lrand = rand_sum / len(splRand)		
	#compare with actual graph
	if(Lreal != 0 and Lrand !=0 and Crand !=0):
		S = (Creal)/(Crand) / (float(Lreal)/(Lrand))
	else:
		S = 0
	return_values.append(S)
	return return_values
开发者ID:hlhendy,项目名称:Protein-Structure-Prediction-ML,代码行数:31,代码来源:GraphAttributes.py

示例4: generate_cluster_graph

def generate_cluster_graph(n,m,in_p,out_p):
	'''Generates graph with 'n' nodes with form m clustures,
	with average in_p within cluster and 'out_degree' between clustures'''
	print "Generating G..."
	if m == 0 or n == 0:
		raise "n or m can not be 0"

	nodes_per_clusture = n/m
	num_of_outer_nodes = math.ceil(nodes_per_clusture * out_p)
	larger_graph = nx.Graph()
	print "\tExpected communities:",m
	print "\tnodes_per_clusture:",nodes_per_clusture,"\n\tnum_of_outer_nodes:",num_of_outer_nodes
	for i in xrange(m):
		# print 'clusture_id',i
		G = nx.fast_gnp_random_graph(nodes_per_clusture,in_p)
		for node in G.nodes():
			larger_graph.add_node((node)+nodes_per_clusture*i)
		for edge in G.edges():
			larger_graph.add_edge((edge[0])+nodes_per_clusture*i,(edge[1])+nodes_per_clusture*i)
		
		chosen_nodes = np.random.choice(G.nodes(),num_of_outer_nodes)
		for node in chosen_nodes:
			node_for_large_graph = node+nodes_per_clusture*i
			larger_graph.add_edge(node_for_large_graph,np.random.choice(larger_graph.nodes()))
	# print larger_graph.nodes()
	# print larger_graph.edges()
	return larger_graph
开发者ID:corlyleung,项目名称:NetworkLabs,代码行数:27,代码来源:detect.py

示例5: main

def main():
    args = parse_arguments()
    # Generate graph for given parameters

    if args.cycle:
        graph = networkx.cycle_graph(args.vertices)
        graph = networkx.path_graph(args.vertices)
    elif args.star:
        graph = networkx.star_graph(args.vertices)
    elif args.wheel:
        graph = networkx.wheel_graph(args.vertices)
    elif args.ladder:
        graph = networkx.ladder_graph(args.vertices)
    elif args.fill_rate:
        if args.fill_rate > 50.0:
            graph = networkx.gnp_random_graph(args.vertices, args.fill_rate / 100.0, None, args.directed)
        else:
            graph = networkx.fast_gnp_random_graph(args.vertices, args.fill_rate / 100.0, None, args.directed)
    else:
        graph = networkx.gnm_random_graph(args.vertices, args.edges, None, args.directed)

    # Print generated graph
    print("{} {}".format(graph.number_of_nodes(), graph.number_of_edges()))
    for edge in graph.edges():
        print("{} {}".format(edge[0] + 1, edge[1] + 1))

    # Export generated graph to .png
    if args.image_path:
        export_to_png(graph, args.image_path)
开发者ID:mkpaszkiewicz,项目名称:algorithm-analysis,代码行数:29,代码来源:graph_generator.py

示例6: get_random_weighted_graph

def get_random_weighted_graph(n, p=0.5, max_weight=10):
	print "n=%d, p=%f, max_weight=%d" % (n, p, max_weight)
	G = nx.fast_gnp_random_graph(n, p)
	for e in G.edges():
		G[e[0]][e[1]]['weight'] = random.randint(1, max_weight)
	# print list(G.edges(data='weight', default=1))
	return G
开发者ID:xiaochaowei,项目名称:586project,代码行数:7,代码来源:random_small_graph_test.py

示例7: test

def test(test_functions,V,p):
    print V
    G = nx.fast_gnp_random_graph(V,p)
    for f in test_functions:
        time,runtime = f(G)
        fp = open(f.__name__+".res","a")
        fp.write("%i,%f,%f\n" % (V,time,runtime))
开发者ID:jorants,项目名称:MV-Matching-V2,代码行数:7,代码来源:test.py

示例8: main

def main():
	import networkx as nx
	from complex_systems.pgg import PublicGoodGames
	import pylab as plt
	import numpy as np
	
	nb_node = 1000
	edge_prob = 10.0/nb_node
	coop_ratio = 0.5
	synergy = 8
	nb_round = 100
	nb_game_per_round = 10
	nb_def = []
	nb_coop = []
	
	# Generate a Random Graph 
	G = nx.fast_gnp_random_graph(nb_node, edge_prob)
	# initialize the game 
	PGG = PublicGoodGames(G=G, synergy=synergy,nb_simulation_step=nb_game_per_round, cooperator_ratio=coop_ratio)
	for i in range(nb_round):
		PGG.run_game()
		nb_def.append(PGG.defector_counter())
		nb_coop.append(PGG.cooperator_counter())
		#print nb_coop, nb_def
	plt.figure()
	plt.plot(nb_def,'b-*')
	plt.plot(nb_coop,'r-*')
	plt.figure()
	print np.mean([val for key, val in G.degree().iteritems()])
	nx.draw_networkx(G, node_size=20, with_labels = False)
	plt.show()
开发者ID:ComplexNetTSP,项目名称:CooperativeNetworking,代码行数:31,代码来源:run_pgg.py

示例9: gen_gnp_graph

def gen_gnp_graph(i):
    """
    Generate a gnp random graph with 2**i nodes.
    """
    n = 2**i
    p = 2*i / (2**i)
    return nx.fast_gnp_random_graph(n,p)
开发者ID:realcr,项目名称:freedomlayer_code,代码行数:7,代码来源:notify_fingers_iters.py

示例10: get_graph

def get_graph(objects, properties):
    graph_type = properties['graph_type']
    n = len(objects)-1
    if 'num_nodes_to_attach' in properties.keys():
        k = properties['num_nodes_to_attach']
    else:
        k = 3
    r = properties['connection_probability']

    tries = 0
    while(True):
        if graph_type == 'random':
            x = nx.fast_gnp_random_graph(n,r)
        elif graph_type == 'erdos_renyi_graph':
            x = nx.erdos_renyi_graph(n,r)
        elif graph_type == 'watts_strogatz_graph':
            x = nx.watts_strogatz_graph(n, k, r)
        elif graph_type == 'newman_watts_strogatz_graph':
            x = nx.newman_watts_strogatz_graph(n, k, r)
        elif graph_type == 'barabasi_albert_graph':
            x = nx.barabasi_albert_graph(n, k, r)
        elif graph_type == 'powerlaw_cluster_graph':
            x = nx.powerlaw_cluster_graph(n, k, r)
        elif graph_type == 'cycle_graph':
            x = nx.cycle_graph(n)
        else: ##Star by default
            x = nx.star_graph(len(objects)-1)
        tries += 1
        cc_conn = nx.connected_components(x)
        if len(cc_conn) == 1 or tries > 5: 
            ##best effort to create a connected graph!
            break
    return x, cc_conn
开发者ID:BenjaminDHorne,项目名称:agentsimulation,代码行数:33,代码来源:GraphGen.py

示例11: test__init__

 def test__init__(self):
     from social_meaning.agent import Agent
     society = nx.watts_strogatz_graph(10, 2, 0)
     a = Agent(mental_graph=nx.fast_gnp_random_graph(10, .1),
               social_network=society,
               node_name=society.nodes()[0])
     repr(a)
开发者ID:JamesPHoughton,项目名称:Dissertation,代码行数:7,代码来源:test_agent.py

示例12: testSerialRandom

def testSerialRandom():
    """ 50 Random serial test cases
    """

    N = 10
    p = .7
    runs = 0
    while runs < 50:

        # a random graph
        G = nx.fast_gnp_random_graph(N, p)
        try:
            nx.shortest_path(G, source=0, target=N-1)
        except:
            continue
        # convert to plain ndarray
        nw1 = nx2nw(G)

        # copy and join network
        nw2 = serialCopy(nw1)

        # compute effective resistance
        ER1 = ResNetwork(
            nw1, silence_level=3).effective_resistance(0, len(nw1)-1)
        ER2 = ResNetwork(
            nw2, silence_level=3).effective_resistance(0, len(nw2)-1)

        # increment runs
        runs += 1
        # assertion
        print (ER1*2-ER2)
        assert (ER1*2-ER2) < 1E-6
开发者ID:JonasAbernot,项目名称:pyunicorn,代码行数:32,代码来源:TestResitiveNetwork-circuits.py

示例13: getRandomPageRanks

def getRandomPageRanks(filename):
	Ga=nx.read_graphml(sys.argv[1])

	# create a copy of the graph and extract giant component
	# get component size distribution
	cc=nx.connected_components(Ga)
	cc_dict={}
	for x in range(0,len(cc)):
		try:
			cc_dict[len(cc[x])].append(x)
		except KeyError:
			cc_dict[len(cc[x])]=[]
			cc_dict[len(cc[x])].append(x)

	isolates=nx.isolates(Ga)

	rg=nx.fast_gnp_random_graph(Ga.number_of_nodes(),2.0*Ga.number_of_edges()/(Ga.number_of_nodes()*(Ga.number_of_nodes()-1)))
	c_rg=nx.average_clustering(rg)
	rg_cc=nx.connected_component_subgraphs(rg)[0]
	rg_asp=nx.algorithms.shortest_paths.generic.average_shortest_path_length(rg_cc)

	p_rg=community.best_partition(rg_cc)
	m_rg=community.modularity(p_rg,rg_cc)

	pageranks = nx.pagerank_numpy(rg)
	return pageranks
开发者ID:JunZhuSecurity,项目名称:restingstate_bibliometrics,代码行数:26,代码来源:pageranker.py

示例14: run_er_algo

def run_er_algo():
    """
    run homework
    """
    nodes = 10000
    prob = 0.1

    # er_graph= er_algorithm(nodes, prob)

    time0 = time.time()
    G = nx.fast_gnp_random_graph(nodes, prob, directed=True)
    digraph = nx.to_dict_of_lists(G)
    time1 = time.time()
    print('NetworkX took {} second'.format(time1 - time0))

    time0 = time.time()
    digraph2 = er_algorithm(nodes, prob)
    time1 = time.time()
    print('Mine took {} second'.format(time1 - time0))

    norm_dist1 = normal_degree_distribution(digraph, 'in')
    norm_dist2 = normal_degree_distribution(digraph2, 'in')
    plt.plot(list(norm_dist1.keys()), list(norm_dist1.values()), 'o',
             list(norm_dist2.keys()), list(norm_dist2.values()), 'g^')



    plt.show()
开发者ID:JavierGarciaD,项目名称:Algorithmic_Thinking,代码行数:28,代码来源:hw_1.py

示例15: get_er_graph

def get_er_graph(n, p):
    """
    Function to get an ER graph
    :param n: number of nodes
    :param p: probability of connection between the nodes
    :return: ER graph
    """
    return nx.fast_gnp_random_graph(n, p)
开发者ID:mairaladeira,项目名称:lab4_ir,代码行数:8,代码来源:test.py


注:本文中的networkx.fast_gnp_random_graph函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。