本文整理汇总了Python中networkx.draw_circular函数的典型用法代码示例。如果您正苦于以下问题:Python draw_circular函数的具体用法?Python draw_circular怎么用?Python draw_circular使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了draw_circular函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: simulateBears
def simulateBears(numYears):
from BearClass import Bear
from BearPopulationClass_tryNotN2 import BearPopulation
import networkx as nx
# Create the starting population
# Make some "bear gods" to use as the parents for the progenitors
beargod1 = Bear('bg1','M',None, None)
beargod2 = Bear('bg2','M',None, None)
beargod3 = Bear('bg3','F',None, None)
adam = Bear('Adam', 'M',beargod1,beargod1)
eve = Bear('Eve', 'F',beargod2,beargod2)
mary = Bear('Mary', 'F',beargod3,beargod3)
year = 0
numBornInFirst100Years = 0
# keep track of the number of males and females created
#nMale = 1
#nFemale = 2
# Create a bear population from the progenitors
progenitors = [adam, eve, mary]
population = BearPopulation(progenitors)
# Start stepping through time
years = range(1,numYears+1)
for year in years:
# print "It is now the year: %s" %(year)
# First things first: each bear gets a year older
population.ageBears()
# Now, what happens as the bears age
# First, check if any bears died and add them to the part of the population
# that has died
population.checkForDead(year)
# for bear in population.allBears:
# print bear
# Create a list of bears that are capable of procreating
population.checkIfCanBang(year)
numBornThisYear = population.generateOffspring(year)
if year <= 100:
numBornInFirst100Years += numBornThisYear
# nMale += newM
# nFemale += newF
# Print the size of the population each year
# print "Number of bears in population after %s years: %s" %(year, \
# len(population.allBears) )
# for bear in population.canProcreate:
# print bear
# Print the bear population
#for bear in population.allBears:
# print bear
print "Final Number of Bears after %i Years: %s" \
%(numYears, len(population.allBears))
if len(population.allBears) <= 1500:
nx.draw_circular(population.tree)
return numBornInFirst100Years, len(population.allBears)
示例2: plot_starlike
def plot_starlike(pathway):
pylab.figure()
nx.draw_circular(pathway, labels=pathway.labels)
pylab.title(pathway.title)
title = pathway.title.replace('/', '-') # TODO: which is the proper way to remove / in a filename?
pylab.savefig('./plots/' + title + '.png')
pylab.show()
示例3: draw_circular_communities
def draw_circular_communities(self):
partition = self.find_partition()[1]
node_color=[float(partition[v]) for v in partition]
labels = self.compute_labels()
nx.draw_circular(self.G,node_color=node_color, labels=labels)
plt.show()
plt.savefig("C:\\Users\\Heschoon\\Dropbox\\ULB\\Current trends of artificial intelligence\\Trends_project\\graphs\\graph_circular1.pdf")
示例4: plot_graphs
def plot_graphs(self):
# draw lables
# choose same layout as in drawing the rest of the graph
pos_G=nx.circular_layout(self.g1) # positions for all nodes for G (in this case circular)
pos_H=nx.circular_layout(self.g2) # positions for all nodes for H (in this case circular)
labels_G = {} # create a dict with labels
for item in self.g1.nodes():
labels_G[item] = item
labels_H = {} # create a dict with labels
for item in self.g2.nodes():
labels_H[item] = item
# color-mapping via numpy
# list of cmaps can be found here: http://matplotlib.org/examples/color/colormaps_reference.html
# I chose this cmap because there are no dark colors in it so the labels stay readable regardless
# the color of the label.
plt.subplots_adjust(left=0,right=1,bottom=0,top=0.95,wspace=0.01,hspace=0.01)
plt.subplot(121)
plt.title("Graph G")
nx.draw_circular(self.g1, cmap=plt.get_cmap('Set1'), node_color=self.nc1)
nx.draw_networkx_labels(self.g1, pos_G, labels_G)
plt.subplot(122)
plt.title("Graph H")
nx.draw_circular(self.g2, cmap=plt.get_cmap('Set1'), node_color=self.nc2)
nx.draw_networkx_labels(self.g2, pos_H, labels_H)
plt.show()
示例5: draw_networkx_ex
def draw_networkx_ex():
G = nx.dodecahedral_graph()
nx.draw(G)
plt.show()
nx.draw_networkx(G, pos=nx.spring_layout(G))
limits = plt.axis('off')
plt.show()
nodes = nx.draw_networkx_nodes(G, pos=nx.spring_layout(G))
plt.show()
edges = nx.draw_networkx_edges(G, pos=nx.spring_layout(G))
plt.show()
labels = nx.draw_networkx_labels(G, pos=nx.spring_layout(G))
plt.show()
edge_labels = nx.draw_networkx_edge_labels(G, pos=nx.spring_layout(G))
plt.show()
print("Circular layout")
nx.draw_circular(G)
plt.show()
print("Random layout")
nx.draw_random(G)
plt.show()
print("Spectral layout")
nx.draw_spectral(G)
plt.show()
print("Spring layout")
nx.draw_spring(G)
plt.show()
print("Shell layout")
nx.draw_shell(G)
plt.show()
print("Graphviz")
示例6: plot_fragment_graph
def plot_fragment_graph(G, labels=None, to_file=None, dpi=300):
# try:
# from networkx import graphviz_layout
# except ImportError:
# raise ImportError("This example needs Graphviz and either PyGraphviz or Pydot")
#
# if len(G.nodes()) == 0:
# raise ValueError('No fragments to plot!')
#
# pos = nx.graphviz_layout(G, prog="dot")
fig = pl.figure(figsize=(10, 10))
node_size = 300
nx.draw_circular(G)
# nx.draw(G, pos,
# with_labels=True,
# alpha=0.5,
# node_size=node_size)
## adjust the plot limits
# offset = node_size / 2
# xmax = offset + max(xx for xx, yy in pos.values())
# ymax = offset + max(yy for xx, yy in pos.values())
# xmin = min(xx for xx, yy in pos.values()) - offset
# ymin = min(yy for xx, yy in pos.values()) - offset
# pl.xlim(xmin, xmax)
# pl.ylim(ymin, ymax)
if to_file != None:
filename = to_file.split('/')[-1]
pl.savefig((filename + "_graph"), dpi=dpi)
else:
pl.show()
return fig
示例7: plot_graph
def plot_graph(G,circular=False):
#Desenha grafo e mostra na tela
if not circular:
nx.draw(G)
else:
nx.draw_circular(G)
plt.show()
示例8: draw_graph
def draw_graph(g, out_filename):
nx.draw(g)
nx.draw_random(g)
nx.draw_circular(g)
nx.draw_spectral(g)
plt.savefig(out_filename)
示例9: drawGraph
def drawGraph(nodes,peers,root):
global G
#root = root.replace(" ", "")
root = root[11:13]
if root == "9:" or root == "9 ":
root = "9"
print root
print root[11:13]
G.add_node(root)
#G.add_node(root.replace(" ", ""))
for x in peers:
for y in nodes:
if str(x) in y:
peer = y[1][11:13]
if peer == "9:" or peer == "9 ":
peer = "9"
G.add_node(peer)
G.add_edge(root,peer)
#for x in (nodes):
# G.add_node(x[1])
if(env.host_string == '145.100.97.62'):
nx.draw_circular(G,with_labels=True,font_size=15,node_color='yellow',node_size=1000)
print G.nodes()
plt.show()
示例10: displayControlImportances
def displayControlImportances(self,nocontrolconnectionmatrix, controlconnectionmatrix ):
"""This method will create a graph containing the
connectivity and importance of the system being displayed.
Edge Attribute: color for control connection
Node Attribute: node importance
It's easier to just create the no control connecion matrix here...
"""
ncG = nx.DiGraph()
n = len(self.variablelist)
for u in range(n):
for v in range(n):
if nocontrolconnectionmatrix[u,v] == 1:
ncG.add_edge(self.variablelist[v], self.variablelist[u])
edgelistNC = ncG.edges()
self.controlG = nx.DiGraph()
for u in range(n):
for v in range(n):
if controlconnectionmatrix[u,v] == 1:
if (self.variablelist[v], self.variablelist[u]) in edgelistNC:
self.controlG.add_edge(self.variablelist[v], self.variablelist[u], controlloop = 0)
else:
self.controlG.add_edge(self.variablelist[v], self.variablelist[u], controlloop = 1)
for node in self.controlG.nodes():
self.controlG.add_node(node, nocontrolimportance = self.blendedrankingNC[node] , controlimportance = self.blendedranking[node])
plt.figure("The Controlled System")
nx.draw_circular(self.controlG)
示例11: plot_network
def plot_network(res):
"""Plot network of multivariate TE between processes.
Plot graph of the network of (multivariate) interactions between
processes (e.g., multivariate TE). The function uses the
networkx class for directed graphs (DiGraph) internally.
Plots a network and adjacency matrix.
Args:
res : dict
output of multivariate_te.analyse_network()
Returns:
instance of a directed graph class from the networkx
package (DiGraph)
"""
try:
res = res['fdr']
except KeyError:
print('plotting non-corrected network!')
g = generate_network_graph(res)
print(g.node)
f, (ax1, ax2) = plt.subplots(1, 2)
adj_matrix = nx.to_numpy_matrix(g)
cmap = sns.light_palette('cadetblue', n_colors=2, as_cmap=True)
sns.heatmap(adj_matrix, cmap=cmap, cbar=False, ax=ax1,
square=True, linewidths=1, xticklabels=g.nodes(),
yticklabels=g.nodes())
ax1.xaxis.tick_top()
plt.setp(ax1.yaxis.get_majorticklabels(), rotation=0)
nx.draw_circular(g, with_labels=True, node_size=300, alpha=1.0, ax=ax2,
node_color='cadetblue', hold=True, font_weight='bold')
plt.show()
return g
示例12: draw_graph
def draw_graph(graphDic, nodesStatus, imageName):
node_colors = []
#first writing the number of nodes
#nx.draw(G)
#select the color
newGraphDic = {} #without the status
for element in graphDic.keys():
status = nodesStatus[element[0] - 1]
if status == "INACTIVE":
node_colors +=['white']
if status == "ACTIVE":
node_colors +=['red']
if status == "SELECTED":
node_colors +=['green']
#generating the graph from the dictionary
G = nx.from_dict_of_lists(graphDic)
nx.draw_circular(G, node_color = node_colors, with_labels=True, node_size = 50)
#G.text(3, 8, 'boxed italics text in data coords', style='italic', bbox={'facecolor':'red', 'alpha':0.5, 'pad':10})
# plt.legend(handles=[ green_patch])
# nx.draw_networkx(G, node_color=node_colors, with_labels=True)
#nx.draw_networkx(G)
#save the result semiSparseRep
print "image name is" + imageName
plt.savefig(imageName);
示例13: show
def show(self, filename=''):
"""
Uses the networkx/matplotlib.pyplot modules to graphically show what network
was created. Nodes should have labels. Shows the resultant graph in a temporary window.
If [filename] is provided, instead saves result in [filename]
"""
try:
import networkx
except ImportError:
print "Please install networkx via 'easy_install networkx', 'pip install networkx' or some other method."
print "You will not have access to the full functionality of this module until then"
sys.exit(1)
try:
import matplotlib.pyplot as plt
except ImportError:
print "Please install matplotlib via 'easy_install matplotlib', 'pip install matplotlib' or some other method."
print "You will not have access to the full functionality of this module until then"
sys.exit(1)
string_edges = map(lambda x: "%s %s" % (x[0], x[1]), self.edge_list)
graph = networkx.parse_edgelist(string_edges)
networkx.draw_circular(graph,prog='neato',width=1,node_size=300,font_size=14,overlap='scalexy')
if filename:
plt.savefig(filename)
else:
plt.show()
示例14: test_build_networkx_graph
def test_build_networkx_graph(self):
url = 'http://localhost:8181/'
output = sys.stdout
bs = bs4.BeautifulSoup(requests.get(url).content)
links = list(extract_links(url, bs))
g = build_networkx_graph(url, links, output=output)
self.assertTrue(g)
output = StringIO.StringIO()
write_nxgraph_to_dot(g, output)
output.seek(0)
print(output.read())
output.seek(0)
self.assertTrue(output.read())
output = StringIO.StringIO()
write_nxgraph_to_json(g, output)
output.seek(0)
print(output.read())
output.seek(0)
self.assertTrue(output.read())
output.seek(0)
with open('./force/force.json','w') as f:
f.write(output.read())
import matplotlib.pyplot as plt
import networkx
networkx.draw_circular(g)
plt.savefig("awesome.svg")
示例15: draw_transmission_graph
def draw_transmission_graph(self, positions=False):
"""
This method draws the transmission graph to the screen using
matplotlib.
INPUTS:
- BOOLEAN: positions
If False: the circular layout will be drawn.
If True: nodes will be restricted in the x-axis.
"""
# Step 1: Guarantee that transmission_graph is made.
transmission_graph = deepcopy(self.relabeled_transmission_graph)
# Step 2: Draw the graph according to the time-restricted layout or
# circular layout.
if positions == False:
nx.draw_circular(transmission_graph)
if positions == True:
if self.node_draw_positions == None:
positions = dict()
for pathogen in self.pathogens:
positions[str(pathogen)] = (pathogen.creation_time, randint(0, 20))
self.node_draw_positions = positions
nx.draw(transmission_graph, pos=self.node_draw_positions)